慶應(医)数列 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

慶應(医)数列 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
慶応義塾大学過去問題
数列$\{ a_n \}$の項の間に次の関係がある。
$a_1=\frac{1}{2},a_2=\frac{1}{6}$
$\frac{a_n+a_{n+1}+a_{n+2}}{3} = \frac{1}{n(n+3)}$
$n=1,2,3\cdots$
$a_3,a_4,a_n,\displaystyle\sum_{k=1}^\infty a_n$を求めよ。
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
数列$\{ a_n \}$の項の間に次の関係がある。
$a_1=\frac{1}{2},a_2=\frac{1}{6}$
$\frac{a_n+a_{n+1}+a_{n+2}}{3} = \frac{1}{n(n+3)}$
$n=1,2,3\cdots$
$a_3,a_4,a_n,\displaystyle\sum_{k=1}^\infty a_n$を求めよ。
投稿日:2018.06.17

<関連動画>

【群数列ニガテな人は見て!!】群数列はこれさえ出来れば大丈夫!〔数学、高校数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
2から順に偶数を並べた数列で、 各郡に含まれる数が、1、3、5$\cdots$個と なるような数列を考える。
2|4,6,8|10,12,14,16,18|20,$\cdots$
このとき、第n郡の初項と末項を求めよ
この動画を見る 

【数B】数列:基礎からわかる確率漸化式!!四面体の頂点を移動する点がn秒後に他の頂点にいる確率

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCの頂点を移動する点Pがある。 点Pは1つの頂点に達してから1秒後に、他の3つの頂点の いずれかに各々確率1/3で移動する。 最初に頂点Oにいた点Pがn秒後に頂点Aにいる確率Pnを求めよ。
この動画を見る 

順天堂大(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=(\sqrt2+1)^{2n-1}-(\sqrt2-1)^{2n-1}$
$a_{n+4}-a_n$が6の倍数であることを示せ.

順天堂(医)過去問
この動画を見る 

福田の一夜漬け数学〜数列・シグマ記号(1)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n(3k^2+7k+2)$
(2)$\displaystyle \sum_{k=1}^nk(k^2+1)$
(3)$\displaystyle \sum_{k=1}^n(-2)^{k-1}$

次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n\frac{1}{k(k+1)}$
(2)$\displaystyle \sum_{k=1}^n\frac{1}{\sqrt k+\sqrt{k+1}}$
この動画を見る 

関西医科大 三項間漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=0,a_2=1$
$a_{n+2}=10a_{n+1}+51a_{n}$とする。

①一般項$a_n$を求めよ。
②$a_n$を10で割ったあまりを$b_n$とする。
$\displaystyle \sum_{k=1}^{2m} b_k$を求めよ。

関西医科大過去問
この動画を見る 
PAGE TOP