問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ ある金属1グラムの価格は正の実数値をとり、ある日の価格は前日に比べ、\\
確率\frac{1}{2}で1.08倍になり(上昇)、確率\frac{1}{2}で0.96倍になる(下落)。この金属の\\
今日(0日目とする)の価格をAとして、以下の問いに答えなさい。ただし、\\
必要ならば、\log_{10}2=0.3010,\ \log_{10}3=0.4771を用いなさい。\\
(1)10日目の価格がAよりも高くなるのは、\boxed{\ \ ア\ \ }日以上で価格が上昇したとき\\
である。また、そのような確率は\frac{\boxed{\ \ イウ\ \ }}{\boxed{\ \ エオ\ \ }}\ である。\\
(2)5日目の価格がAよりも低かった時、10日目の価格がAよりも高い確率\\
は\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\ である。\\
(3)10日目の価格がAよりも高かった時、1日目と2日目のうち少なくとも\\
1回は価格が下落していた確率は\frac{\boxed{\ \ コサシ\ \ }}{\boxed{\ \ スセソ\ \ }}\ である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
\begin{eqnarray}
{\Large\boxed{4}}\ ある金属1グラムの価格は正の実数値をとり、ある日の価格は前日に比べ、\\
確率\frac{1}{2}で1.08倍になり(上昇)、確率\frac{1}{2}で0.96倍になる(下落)。この金属の\\
今日(0日目とする)の価格をAとして、以下の問いに答えなさい。ただし、\\
必要ならば、\log_{10}2=0.3010,\ \log_{10}3=0.4771を用いなさい。\\
(1)10日目の価格がAよりも高くなるのは、\boxed{\ \ ア\ \ }日以上で価格が上昇したとき\\
である。また、そのような確率は\frac{\boxed{\ \ イウ\ \ }}{\boxed{\ \ エオ\ \ }}\ である。\\
(2)5日目の価格がAよりも低かった時、10日目の価格がAよりも高い確率\\
は\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\ である。\\
(3)10日目の価格がAよりも高かった時、1日目と2日目のうち少なくとも\\
1回は価格が下落していた確率は\frac{\boxed{\ \ コサシ\ \ }}{\boxed{\ \ スセソ\ \ }}\ である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ ある金属1グラムの価格は正の実数値をとり、ある日の価格は前日に比べ、\\
確率\frac{1}{2}で1.08倍になり(上昇)、確率\frac{1}{2}で0.96倍になる(下落)。この金属の\\
今日(0日目とする)の価格をAとして、以下の問いに答えなさい。ただし、\\
必要ならば、\log_{10}2=0.3010,\ \log_{10}3=0.4771を用いなさい。\\
(1)10日目の価格がAよりも高くなるのは、\boxed{\ \ ア\ \ }日以上で価格が上昇したとき\\
である。また、そのような確率は\frac{\boxed{\ \ イウ\ \ }}{\boxed{\ \ エオ\ \ }}\ である。\\
(2)5日目の価格がAよりも低かった時、10日目の価格がAよりも高い確率\\
は\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\ である。\\
(3)10日目の価格がAよりも高かった時、1日目と2日目のうち少なくとも\\
1回は価格が下落していた確率は\frac{\boxed{\ \ コサシ\ \ }}{\boxed{\ \ スセソ\ \ }}\ である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
\begin{eqnarray}
{\Large\boxed{4}}\ ある金属1グラムの価格は正の実数値をとり、ある日の価格は前日に比べ、\\
確率\frac{1}{2}で1.08倍になり(上昇)、確率\frac{1}{2}で0.96倍になる(下落)。この金属の\\
今日(0日目とする)の価格をAとして、以下の問いに答えなさい。ただし、\\
必要ならば、\log_{10}2=0.3010,\ \log_{10}3=0.4771を用いなさい。\\
(1)10日目の価格がAよりも高くなるのは、\boxed{\ \ ア\ \ }日以上で価格が上昇したとき\\
である。また、そのような確率は\frac{\boxed{\ \ イウ\ \ }}{\boxed{\ \ エオ\ \ }}\ である。\\
(2)5日目の価格がAよりも低かった時、10日目の価格がAよりも高い確率\\
は\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\ である。\\
(3)10日目の価格がAよりも高かった時、1日目と2日目のうち少なくとも\\
1回は価格が下落していた確率は\frac{\boxed{\ \ コサシ\ \ }}{\boxed{\ \ スセソ\ \ }}\ である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
投稿日:2022.07.01