【高校数学】等式の証明~恒等式の証明の基礎~ 1-8【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】等式の証明~恒等式の証明の基礎~ 1-8【数学Ⅱ】

単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
投稿日:2023.04.28

<関連動画>

【高校数学】 数Ⅱ-17 等式の証明②

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\displaystyle \frac{a}{b}=\displaystyle \frac{c}{d}$のとき、$\displaystyle \frac{a^2-b^2}{a^2+b^2}=\displaystyle \frac{c^2-d^2}{c^2+d^2}$が成り立つことを証明しよう。

②$a:b:c=2:3:4$、abc≠0のとき、$\displaystyle \frac{ab+bc+ca}{a^2+b^2+c^2}$の値を求めよう。
この動画を見る 

福田のおもしろ数学037〜相加相乗平均の罠〜2変数関数の最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x>1,y>1$のとき、
$x+y+\frac{2}{x+y}+\frac{1}{2xy}$の最小値を求めよ
この動画を見る 

神戸大 3次関数の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#式と証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$t\gt 0$とし,
$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$
$-1\leqq x \leqq 2$ における最大値と最小値を求めよ.

神戸大過去問
この動画を見る 

大学入試問題#158 名古屋市立大学(2020) 2項展開の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ますただ
問題文全文(内容文):
$(x+2y)^2(x+2y+3z)^4$を展開した時
$x^4y^2,x^3y^2z$の係数をそれぞれ求めよ。

出典:2020年名古屋市立大学 入試問題
この動画を見る 

どっちがでかい

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どっちがでかい?
$1.11^{111}\ vs\ 1111$
この動画を見る 
PAGE TOP