【数Ⅰ】【2次関数】2次関数の最大最小場合分け1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】2次関数の最大最小場合分け1 ※問題文は概要欄

問題文全文(内容文):
$a$は正の定数とする。関数$y=x^2-2x-1~~(0\leqq x \leqq a)$について、次の問いに答えよ。
(1) 最小値を求めよ
(2) 最大値を求めよ
チャプター:

0:00 OP
0:03 導入
1:35 軸からの距離とは
4:24 問題1(1)の解説
8:24 解答のポイント3つ
9:15 場合分けの落とし穴
10:40 問題1(2)の解説

単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$は正の定数とする。関数$y=x^2-2x-1~~(0\leqq x \leqq a)$について、次の問いに答えよ。
(1) 最小値を求めよ
(2) 最大値を求めよ
投稿日:2024.11.23

<関連動画>

上智大2020整数解をもつ二次方程式の条件 2つの解法

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-mx+3m+1=0$が整数解をもつ整数$m$を求めよ.

2020上智大過去問
この動画を見る 

#62.5 #数検1級1次 #有理化 #Shorts

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 2 }}{1+\sqrt{ 2 }+\sqrt{ 3 }}$を有理化せよ

出典:数検1級1次
この動画を見る 

因数分解&ご報告

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$x^2+119x-3600$
この動画を見る 

#49 数検1級1次 過去問 根号を外す

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#2次関数とグラフ#解と判別式・解と係数の関係#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ -5+2\sqrt{ 13 } }\ $の二重根号をはずせ
この動画を見る 

方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
xは正の実数であるとする.
$x^2-3x+6\sqrt x-8=0$
これを解け.
この動画を見る 
PAGE TOP