【高校数学】 数B-16 ベクトルの内積⑤ - 質問解決D.B.(データベース)

【高校数学】 数B-16 ベクトルの内積⑤

問題文全文(内容文):
◎右の正六角形ABCDEFにおいて、AB=2とする。
次の内積を求めよう。

①$\overrightarrow{ AB }・\overrightarrow{ AF }$

②$\overrightarrow{ AB }・\overrightarrow{ BC }$

③$\overrightarrow{ AD }・\overrightarrow{ BF }$

④$\overrightarrow{ AC }・\overrightarrow{ AE }$

⑤$\overrightarrow{ CE }・\overrightarrow{ BE }$

※図は動画内参照
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎右の正六角形ABCDEFにおいて、AB=2とする。
次の内積を求めよう。

①$\overrightarrow{ AB }・\overrightarrow{ AF }$

②$\overrightarrow{ AB }・\overrightarrow{ BC }$

③$\overrightarrow{ AD }・\overrightarrow{ BF }$

④$\overrightarrow{ AC }・\overrightarrow{ AE }$

⑤$\overrightarrow{ CE }・\overrightarrow{ BE }$

※図は動画内参照
投稿日:2015.12.06

<関連動画>

【数C】【ベクトルの内積】0でない2つのベクトルa, bについて、|a+b|=|a-b|ならばa⊥bであることを示せ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):

$\vec{0}$でない2つのベクトル$\vec{a}, \vec{b}$について、
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ならば
$\vec{a} \perp \vec{b}$であることを示せ。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第3問〜平面幾何とベクトル

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#周角と円に内接する四角形・円と接線・接弦定理#平面上のベクトルと内積#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。
・点Oは辺AB上にある。
・点Pは正六角形ABCDFの内部にある。
・点Qは線分CP上にある。
・三角形OCPと三角形OQFは共に正三角形である。

(1)四角形OQPFに着目すると、$\angle OFQ=\angle OPQ$より、
OQPFは円に内接する四角形なので、$\angle OPF=\boxed{\ \ アイ\ \ }°$とわかる。

(2)$AB //FC$に着目すると、$\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$である。$OC//FP$
であることに着目すると、$\triangle OCP=\triangle OCF$なので、$OC^2=\boxed{\ \ オ\ \ }$とわかる。
また、$OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }$である。

(3)$OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}$であり、
$\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }$
とおくと、$t$は$t^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0$を満たす。

2021明治大学全統過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第3問〜平面ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
点Oを原点とする座標平面上の点$P,Q,R$を、ベクトル$\overrightarrow{ a }=(2,1),\overrightarrow{ b }=(1,2)$を用い、
位置ベクトル$\overrightarrow{ OP }=f(t)\overrightarrow{ a }, \overrightarrow{ OQ }=f(t+2)\overrightarrow{ a }, \overrightarrow{ OR }=g(t)\overrightarrow{ b }$で定める。
ここで、$f(t),g(t)$は、実数tを用いて、
$f(t)=9t^2+1, g(t)=\frac{1}{8}(t^2-6t+9)$で表される。
(1)$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角を$\theta$とする。ただし、$0 \leqq \theta \leqq \pi$とする。このとき、
$\sin\theta=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。

(2)$t=-\boxed{\ \ ウ\ \ }$のとき、点Pと点Qが一致する。それ以外のとき、点P,Q,Rは
異なる3点となり、$t=\boxed{\ \ エ\ \ }$のときその3点が一直線上に並ぶ。

(3)$-\frac{4}{3} \leqq t \leqq 4$の範囲において、上記(2)以外のとき、$\triangle PQR$の面積は
$t=\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$で最大値$\boxed{\ \ キク\ \ }$をとる。

2021慶應義塾大学商学部過去問
この動画を見る 

【数B】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(2)s+t≦4,s≧0,t≧0

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.

(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
この動画を見る 

福田の数学〜北海道大学2024年理系第4問〜三角形の内心の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 三角形OABが、|$\overrightarrow{OA}$|=3, |$\overrightarrow{AB}$|=5, $\overrightarrow{OA}・\overrightarrow{OB}$=10 を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。
(1)辺OBの長さを求めよ。
(2)$\overrightarrow{OI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)$\overrightarrow{HI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
この動画を見る 
PAGE TOP