#電気通信大学(2017) #区分求積法 #Shorts - 質問解決D.B.(データベース)

#電気通信大学(2017) #区分求積法 #Shorts

問題文全文(内容文):
以下の区分求積法を解け
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{k}{4n^2-3k^2}$

出典:2017年電気通信大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
以下の区分求積法を解け
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{k}{4n^2-3k^2}$

出典:2017年電気通信大学
投稿日:2024.05.30

<関連動画>

大学入試問題#451「このタイプ、たまに出題される」 お茶の水女子大学1997 #不等式の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#お茶の水女子大学
指導講師: ますただ
問題文全文(内容文):
任意の正の数$x,y$に対して
$(x+y)^4 \leqq c^3(x^4+y^4)$が成り立つような$c$の値の範囲を求めよ。

出典:1997年お茶の水女子大学 入試問題
この動画を見る 

中学生でも理解可能。ルートの中の二乗  奈良大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=a^2+1$ , $a=\sqrt 6 -2$
$\sqrt {x+2a} + \sqrt {x-2a} =?$

奈良大学
この動画を見る 

九州大 COS7.5° 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z_1=\displaystyle \frac{1+i}{\sqrt{ 2 }},z_2=\displaystyle \frac{\sqrt{ 3 }+i}{2}$

(1)
$|z_1+z_2|$の値を求めよ

(2)
$\cos 7.5^{ \circ }$を求めよ

出典:1972年九州大学 過去問
この動画を見る 

東大 レピュニット数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{ 1111 + \cdots +11}^{3^n桁}$は$3^n$で割り切れるが
$3^{n+1}$では割り切れないことを示せ.

東大過去問
この動画を見る 

京都大 三角比 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
$0 \leqq α < β< γ< 2\pi$
$cosα+cosβ+cosγ=0$
$sinα+sinβ+sinγ=0$である
β-α、γ-βの値を求めよ。
この動画を見る 
PAGE TOP