問題文全文(内容文):
以下の区分求積法を解け
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{k}{4n^2-3k^2}$
出典:2017年電気通信大学
以下の区分求積法を解け
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{k}{4n^2-3k^2}$
出典:2017年電気通信大学
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
ますただ
問題文全文(内容文):
以下の区分求積法を解け
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{k}{4n^2-3k^2}$
出典:2017年電気通信大学
以下の区分求積法を解け
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{k}{4n^2-3k^2}$
出典:2017年電気通信大学
投稿日:2024.05.30