【数C】【平面上のベクトル】ベクトル方程式4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトル方程式4 ※問題文は概要欄

問題文全文(内容文):
A(-6, 2), B(3, -5)とする。線分ABの垂直二等分線の方程式を、ベクトルを利用して求めよ。
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-6, 2), B(3, -5)とする。線分ABの垂直二等分線の方程式を、ベクトルを利用して求めよ。
投稿日:2025.05.19

<関連動画>

福田の数学〜東京工業大学2023年理系第5問(PART2)〜4直線に接する球面の決定

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。

2021立教大学経済学部過去問
この動画を見る 

【数C】平面ベクトル:A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
この動画を見る 

【高校数学】 数B-45 位置ベクトルと図形①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$A(\overrightarrow{a}),B(\overrightarrow{b}),C(\overrightarrow{c}),D(\overrightarrow{d})$を頂点とする四面体の辺$BC$を$3:1$に内分する点を
$P,DP$を$4:3$に外分する点を$Q$,線分$AQ$の中点を$R$とする.
点$P$,点$Q$,点$R$の位置ベクトルを,$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d}$で表そう.

②四面体$OABC$がある.線分$AB$を$2:3$に内分する点を$P$,
線分$OP$を$10:1$に外分する点を$Q$,線分$CQ$を$3:1$に内分する点を$R$とする.
$\triangle ARB$の重心を$G$とするとき,
$\overrightarrow{OG}$を$\overrightarrow{OA}=\large{\overrightarrow{a}}=\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC},\large{\overrightarrow{c}}$で表そう.
この動画を見る 

【わかりやすく】2点を結ぶベクトルの成分表示(高校数学B/C/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
4点$O(0,0),A(3,0),B(6,2),C(2,1)$について、次のベクトルを成分表示で表せ。
また、その大きさを求めよ。
(1)$\overrightarrow{ OC }$
(2)$\overrightarrow{ AB }$
(3)$\overrightarrow{ BC }$
(4)$\overrightarrow{ CO }$
この動画を見る 
PAGE TOP