福田の数学〜早稲田大学2025教育学部第2問〜組合せと確率の基本的な性質 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025教育学部第2問〜組合せと確率の基本的な性質

問題文全文(内容文):

$\boxed{2}$

$n$を自然数とする。

$1$から$n$mでの数字がもれなく一つずつ記入された

$n$枚の赤色のカードと$1$から$n$までの数字がもれなく

一つずつ記入された$n$枚の白色のカードがある。

この$2n$枚のカードの中から同時に$2$枚を取り出し、

カードに記入された数字を確認した後にもとに戻す、

という試行を$2$回行う。次の問いに答えよ。

(1)$1$回目に取り出した$2$枚のカードに記入された

数字が同じであり、かつ$1$回目に取り出した$2$枚の

カードに記入された数字と$2$回目に取り出した$2$枚の

カードに記入された数字の間に共通の数字が

存在しない取り出し方の総数を$n$を用いて表せ。

(2)$1$回目に取り出した$2$枚のカードに記入された

数字が異なり、かつ$1$回目に取り出した$2$枚の

カードに記入された数字と$2$回目に取り出した

$2$枚のカードに記入された数字の間に共通の数字が

存在しない取り出し方の総数を$n$を用いて表せ。

(3)$1$回目に取り出した$2$枚のカードに記入された数字と

$2$回目に取り出した$2$枚のカードに記入された

数字の間に共通の数字が存在する確率を

$n$を用いて表せ。

$2025$年早稲田大学教育学部過去問題
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$n$を自然数とする。

$1$から$n$mでの数字がもれなく一つずつ記入された

$n$枚の赤色のカードと$1$から$n$までの数字がもれなく

一つずつ記入された$n$枚の白色のカードがある。

この$2n$枚のカードの中から同時に$2$枚を取り出し、

カードに記入された数字を確認した後にもとに戻す、

という試行を$2$回行う。次の問いに答えよ。

(1)$1$回目に取り出した$2$枚のカードに記入された

数字が同じであり、かつ$1$回目に取り出した$2$枚の

カードに記入された数字と$2$回目に取り出した$2$枚の

カードに記入された数字の間に共通の数字が

存在しない取り出し方の総数を$n$を用いて表せ。

(2)$1$回目に取り出した$2$枚のカードに記入された

数字が異なり、かつ$1$回目に取り出した$2$枚の

カードに記入された数字と$2$回目に取り出した

$2$枚のカードに記入された数字の間に共通の数字が

存在しない取り出し方の総数を$n$を用いて表せ。

(3)$1$回目に取り出した$2$枚のカードに記入された数字と

$2$回目に取り出した$2$枚のカードに記入された

数字の間に共通の数字が存在する確率を

$n$を用いて表せ。

$2025$年早稲田大学教育学部過去問題
投稿日:2025.07.21

<関連動画>

【数A】【場合の数と確率】反復試行の確率、サイコロの確率 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを7回投げるとき、1の目が3回、2の目が2回、その他の目が2回出る確率を求めよ。
この動画を見る 

【順列と何が違うの!?】組合せを解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
組合せ
男子4人、女子5人の中から5人の委員を選ぶ
①選び方は何通り
②男子2人、女子3人の選び方
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(1)〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)(a)1個のさいころを4回続けて投げるとき、4回とも同じ目が出る確率は
$\displaystyle\frac{1}{\boxed{\ \ アイウ\ \ }}$であり、3, 4, 5, 6の目がそれぞれ1回ずつ出る確率は$\displaystyle\frac{1}{\boxed{\ \ エオ\ \ }}$である。
(b)1個のさいころを4回続けて投げて、出た目を順に左から並べて4桁の整数Nを作る。例えば、1回目に2、2回目に6、3回目に1、4回目に2の目がでた場合はN=2612である。Nが偶数となる確率は$\displaystyle\frac{1}{\boxed{\ \ カ\ \ }}$であり、N≧2023 となる確率は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であり、N≧5555 となる確率は$\displaystyle\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシス\ \ }}$である。
この動画を見る 

これどれくらいすごいん?

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
7つのサイコロがゾロ目になる確率を計算
この動画を見る 

福田の数学〜ポリアの壺は証明を覚えよう〜杏林大学2023年医学部第1問前編〜ポリアの壺

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 
PAGE TOP