【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第3問(1)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第3問(1)解説

問題文全文(内容文):
東京大学 2021年理科第3問(1)曲線と接線の接点以外の共有点を求めよ
関数
f(x)=x/(x²+3)
に対して、y=f(x)のグラフをCとする。点A(1,f(1))におけるCの接線を
l:y=g(x)
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
∫{f(x)-g(x)}²dx
を計算せよ。
チャプター:

0:00 問題文
0:05 接線の方程式を求める
1:26 共有点の座標を求める
3:36 エンディング

単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科第3問(1)曲線と接線の接点以外の共有点を求めよ
関数
f(x)=x/(x²+3)
に対して、y=f(x)のグラフをCとする。点A(1,f(1))におけるCの接線を
l:y=g(x)
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
∫{f(x)-g(x)}²dx
を計算せよ。
投稿日:2021.05.02

<関連動画>

東京商船大 微分公式の証明

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京商船大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2-1)^n(n$自然数$)$

(1)
$f'(x)=2nx(x^2-1)^{n-1}$を証明せよ

(2)
$f(x)$の極値を求めよ

出典:東京海洋大学 過去問
この動画を見る 

11大阪府教員採用試験(数学:1番 接線と恒等式)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$ $a\in IR$とする.

放物線$y=x^2-2(a+1)x+a^2+4a$は
$a$の値によらず一定の直線$\ell$に接する.
この$\ell$の方程式を求めよ.
この動画を見る 

微分方程式⑦-1【2階微分方程式の一般解を求める】(高専数学、数検1級)

単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
2階微分方程式の一般解である.これを解け.

(1)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}-4x=0$
(2)$\dfrac{d^2x}{dt^2}+10\dfrac{dx}{dt}+25x=0$
(3)$\dfrac{d^2x}{dt^2}-4\dfrac{dx}{dt}+6x=0$
この動画を見る 

数Ⅲ微分!絶対に落としたくない問題です【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$に対して,$(1+x)^{\frac{1}{x}}<e<(1+x)^{\frac{1}{x}+1}$が成り立つことを示せ。

一橋大過去問
この動画を見る 

大阪大 3次関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲

出典:2006年大阪大学 過去問
この動画を見る 
PAGE TOP