福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。 - 質問解決D.B.(データベース)

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。

問題文全文(内容文):
\begin{eqnarray}
[1]座標平面上に点A(-8,0)をとる。また、不等式\\
x^2+y^2-4x-10y+4 \leqq 0\\
の表す領域をDとする。\\
\\
\\
(1)領域Dは、中心が点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })、半径が\boxed{\ \ ウ\ \ }の円の\\
\boxed{\ \ エ\ \ }である。\\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪ 周   ① 内部   ② 外部   \\
③ 周および内部   ④ 周および外部\\
\\  
\\
以下、点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })をQとし、方程式\\
x^2+y^2-4x-10y+4=0\\
の表す図形をCとする。\\
\\
(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。\\
\\
(\textrm{i})(1)により、直線y=\boxed{\ \ オ\ \ }は点Aを通るCの接線の一つとなること\\
がわかる。\\
\\
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。\\
点Aを通り、傾きがkの直線をlとする。\\
\\
太郎:直線lの方程式はy=k(x+8)と表すことができるから、\\
これを\\
x^2+y^2-4x-10y+4=0\\
に代入することで接線を求められそうだね。\\
花子:x軸と直線AQのなす角のタンジェントに着目することでも\\
求められそうだよ。\\
\\
(\textrm{ii}) 太郎さんの求め方について考えてみよう。\\
y=k(x+8)をx^2+y^2-4x-10y+4=0に代入すると、\\
xについての2次方程式\\
(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0\\
が得られる。この方程式が\boxed{\ \ カ\ \ }ときのkの値が接線の傾きとなる。\\
\\
\boxed{\ \ カ\ \ }の解答群\\
⓪重解をもつ\\
①異なる2つの実数解をもち、1つは0である\\
②異なる2つの正の実数解をもつ\\
③正の実数解と負の実数解をもつ\\
④異なる2つの負の実数解をもつ\\
⑤異なる2つの虚数解をもつ\\
\\
(\textrm{iii})花子さんの求め方について考えてみよう。\\
x軸と直線AQのなす角を\theta(0 \lt \theta \leqq \frac{\pi}{2})とすると\\
\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\\
であり、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾きは\tan\boxed{\ \ ケ\ \ }\\
と表すことができる。\\
\\
\boxed{\ \ ケ\ \ }の解答群\\
⓪\theta   ①2\theta   ②(\theta+\frac{\pi}{2})\\
③(\theta-\frac{\pi}{2})   ④(\theta+\pi)   ⑤(\theta-\pi)\\
⑥(2\theta+\frac{\pi}{2})   ⑦(2\theta-\frac{\pi}{2})\\
\\
\\
(\textrm{iv})点Aを通るCの接線のうち、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾き\\
をk_0とする。このとき、(\textrm{ii})または(\textrm{iii})の考え方を用いることにより\\
k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\\
であることがわかる。\\
直線lと領域Dが共有点をもつようなkの値の範囲は\boxed{\ \ シ\ \ }である。\\
\\
\boxed{\ \ シ\ \ }の解答群\\
⓪k \gt k_0 ①k \geqq k_0\\
②k \lt k_0 ③k \leqq k_0\\
④0 \lt k \lt k_0 ⑤0 \leqq k \leqq k_0\\
\end{eqnarray}

2022共通テスト数学過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#軌跡と領域#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[1]座標平面上に点A(-8,0)をとる。また、不等式\\
x^2+y^2-4x-10y+4 \leqq 0\\
の表す領域をDとする。\\
\\
\\
(1)領域Dは、中心が点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })、半径が\boxed{\ \ ウ\ \ }の円の\\
\boxed{\ \ エ\ \ }である。\\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪ 周   ① 内部   ② 外部   \\
③ 周および内部   ④ 周および外部\\
\\  
\\
以下、点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })をQとし、方程式\\
x^2+y^2-4x-10y+4=0\\
の表す図形をCとする。\\
\\
(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。\\
\\
(\textrm{i})(1)により、直線y=\boxed{\ \ オ\ \ }は点Aを通るCの接線の一つとなること\\
がわかる。\\
\\
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。\\
点Aを通り、傾きがkの直線をlとする。\\
\\
太郎:直線lの方程式はy=k(x+8)と表すことができるから、\\
これを\\
x^2+y^2-4x-10y+4=0\\
に代入することで接線を求められそうだね。\\
花子:x軸と直線AQのなす角のタンジェントに着目することでも\\
求められそうだよ。\\
\\
(\textrm{ii}) 太郎さんの求め方について考えてみよう。\\
y=k(x+8)をx^2+y^2-4x-10y+4=0に代入すると、\\
xについての2次方程式\\
(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0\\
が得られる。この方程式が\boxed{\ \ カ\ \ }ときのkの値が接線の傾きとなる。\\
\\
\boxed{\ \ カ\ \ }の解答群\\
⓪重解をもつ\\
①異なる2つの実数解をもち、1つは0である\\
②異なる2つの正の実数解をもつ\\
③正の実数解と負の実数解をもつ\\
④異なる2つの負の実数解をもつ\\
⑤異なる2つの虚数解をもつ\\
\\
(\textrm{iii})花子さんの求め方について考えてみよう。\\
x軸と直線AQのなす角を\theta(0 \lt \theta \leqq \frac{\pi}{2})とすると\\
\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\\
であり、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾きは\tan\boxed{\ \ ケ\ \ }\\
と表すことができる。\\
\\
\boxed{\ \ ケ\ \ }の解答群\\
⓪\theta   ①2\theta   ②(\theta+\frac{\pi}{2})\\
③(\theta-\frac{\pi}{2})   ④(\theta+\pi)   ⑤(\theta-\pi)\\
⑥(2\theta+\frac{\pi}{2})   ⑦(2\theta-\frac{\pi}{2})\\
\\
\\
(\textrm{iv})点Aを通るCの接線のうち、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾き\\
をk_0とする。このとき、(\textrm{ii})または(\textrm{iii})の考え方を用いることにより\\
k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\\
であることがわかる。\\
直線lと領域Dが共有点をもつようなkの値の範囲は\boxed{\ \ シ\ \ }である。\\
\\
\boxed{\ \ シ\ \ }の解答群\\
⓪k \gt k_0 ①k \geqq k_0\\
②k \lt k_0 ③k \leqq k_0\\
④0 \lt k \lt k_0 ⑤0 \leqq k \leqq k_0\\
\end{eqnarray}

2022共通テスト数学過去問
投稿日:2022.01.20

<関連動画>

2023共通テスト数学 1A 第1問

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)#共通テスト
指導講師: 鈴木貫太郎
問題文全文(内容文):
第一問,
$\vert x+6 \vert \leqq 2$
$\Box \leqq x \leqq \Box$
$\vert (1-\sqrt3)(a-b)(c-d)+6 \vert 2$
$\Box \leqq (a-b)(c-d) \leqq \boxed{①}$
$(a-b)(c-d)=①$でさらに$(a-c)(b-d)=-3+\sqrt3 $なら $(a-d)(c-b)=\Box $

20232共通テスト過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第3問〜無理数である証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Oを原点とする座標平面において、第1象限に属する点P($\sqrt 2r$, $\sqrt 3s$)(r,sは有理数)をとるとき、線分OPの長さは無理数となることを示せ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

ルートひとりぼっち大作戦  西武文理

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a=\sqrt 3 + 3$のとき
$a^2 -6a+11$

西部学園文理高等学校
この動画を見る 

【数Ⅰ】中高一貫校用問題集(論理・確率編)集合と命題:命題と条件:範囲を利用した真偽の見分け方

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の命題の真偽を調べよ
$「-1<x<2」 ⇒ 「x>-2」$
この動画を見る 

データの分析 データが変更されたときの平均、分散の関係【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、ある6人について、懸垂が何回できたかを記録したものである。
14 11 10 18 16 9(単位は回)
(1) このデータの平均値を求めよ。
(2) このデータには記録ミスがあり、18回は正しくは17回、9回は正しくは10回であった。この誤りを修正した時、このデータの平均値、分散は、修正前から増加するか、減少するか、変化しないかを答えよ。
(3)(2)の修正後、他の1人の生徒について同じように懸垂の記録を取ったところ、13回であった。この生徒を加えた7人のデータの分散は、加える前と比較して増加するか、減少するか、変化しないかを答えよ。
この動画を見る 
PAGE TOP