整数問題 合同式 二項展開 - 質問解決D.B.(データベース)

整数問題 合同式 二項展開

問題文全文(内容文):
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
投稿日:2019.05.30

<関連動画>

整式の剰余

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を$(x-1)^3$で割った余りを求めよ.
この動画を見る 

絶対値 中1も解ける!! 海星高校

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ある整数xの絶対値が4より小さいという。
xは全部でいくつの整数が考えられるか。

海星高校
この動画を見る 

割って余る問題 専大松戸(千葉県)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
3つの整数57,76,131を正の整数nで割ると余りがそれぞれ3,4,5となる。
このような正の整数nは全部で何個?
専修大学松戸高等学校
この動画を見る 

慶應志木高校入試問題 約数の逆数の総和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$N$の約数の和は$120$であり,$N$の約数の逆数の和は$\dfrac{15}{7}$である.
$N$を求めよ.

慶応志木高過去問
この動画を見る 

沼に嵌りそうな典型問題 産業医科大学2019 大学入試問題#931

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
実数$x,y$が
$x^2+y^2+2xy+2x-2y+2=0$を満たすとき,
$x-y$の最大値を求めよ.

2019産業医科大学過去問題
この動画を見る 
PAGE TOP