整数問題 合同式 二項展開 - 質問解決D.B.(データベース)

整数問題 合同式 二項展開

問題文全文(内容文):
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
投稿日:2019.05.30

<関連動画>

整数の良問だよ!やや難?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは非負整数である.
$ a!+5^b=7^c $を満たす(a,b,c)をすべて求めよ.
この動画を見る 

御茶ノ水女子 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
お茶の水女子大学過去問題
n自然数
$2^n+1$は15の倍数でないことを証明せよ。
この動画を見る 

京都大 3次関数 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ

出典:2019年京都大学 過去問
この動画を見る 

整数、素数、京都大学入試問題 数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qともに素数
$p^q+q^p$が素数となるp,qをすべて求めよ

京大過去問
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第1問(2)〜6または8または9で割り切れる数の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$n$を自然数とする。

$1$から$n$までの自然数の中で$6$または$8$または

$9$で割り切れるものの個数を$a_n$で表す。

このとき、$a_{30}=\boxed{ウ}$となる。

また、$a_n=1000$を満たす最大の$n$は$\boxed{エ}$である。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 
PAGE TOP