数検準1級2次過去問【2020年12月】3番:合成関数 - 質問解決D.B.(データベース)

数検準1級2次過去問【2020年12月】3番:合成関数

問題文全文(内容文):
3⃣ $0 \leqq x \leqq 4$

$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2 (0 \leqq x < 2) \\
-2x+8(2 \leqq x \leqq 4)
\end{array}
\right.
\end{eqnarray}$

(1)$f(f(x)) (0 \leqq x \leqq 4)$を求めよ。
(2)$f(f(x))=x$をみたすxをすべて求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣ $0 \leqq x \leqq 4$

$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2 (0 \leqq x < 2) \\
-2x+8(2 \leqq x \leqq 4)
\end{array}
\right.
\end{eqnarray}$

(1)$f(f(x)) (0 \leqq x \leqq 4)$を求めよ。
(2)$f(f(x))=x$をみたすxをすべて求めよ。
投稿日:2020.12.13

<関連動画>

理系こう聞こえている?

アイキャッチ画像
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「無限」理系にはこう聞こえています.
この動画を見る 

【演習】極限の式変形の方針について解説しました!【数学III】

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \frac{cosax-cosbx}{x^2}$を求めよ
この動画を見る 

福田のおもしろ数学317〜複雑な数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle a_n=n\log n\log(n+1)\{\sin(\frac{1}{\log n})-\sin(\frac{1}{\log(n+1})\}$
$\displaystyle \lim_{n\to \infty}a_n$を求めて下さい。
この動画を見る 

【高校数学】数Ⅲ-54 無理関数とそのグラフ①

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の無理関数のグラフをかけ。

①$y=\sqrt{3x}$

②$y=-\sqrt3$

③$y=\sqrt{-3x}$

④$y=\sqrt{3x+6}$
この動画を見る 

福田の数学〜曲線の長さの計算は大丈夫?〜明治大学2023年理工学部第2問〜曲線の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\dfrac{1}{8}x^2-logx(x \gt0)$とし、座標平面上の曲線y=f(x)をCとする。ただし、logxは自然対数を表す。関数f(x)は$x=\fbox{あ}$で最小値をとる。曲線C上の点A(1,f(1))における曲線Cの接線をlとすると、lの方程式は$y=\fbox{い}$である。
曲線Cと接線lおよび直線x=2で囲まれた図形の面積は$\fbox{う}$である。また、点$(t,f(t))(t \lt1)$をPとし、点Aから点Pまでの曲線Cの長さをL(t)とすると$L(2)=\fbox{え}$である。また、$\displaystyle \lim_{ t \to 1+0 } \dfrac{L(t)}{t-1}= \fbox{お}$である。

2023明治大学理工学部過去問
この動画を見る 
PAGE TOP