数検準1級2次過去問【2020年12月】3番:合成関数 - 質問解決D.B.(データベース)

数検準1級2次過去問【2020年12月】3番:合成関数

問題文全文(内容文):
3⃣ $0 \leqq x \leqq 4$

$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2 (0 \leqq x < 2) \\
-2x+8(2 \leqq x \leqq 4)
\end{array}
\right.
\end{eqnarray}$

(1)$f(f(x)) (0 \leqq x \leqq 4)$を求めよ。
(2)$f(f(x))=x$をみたすxをすべて求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣ $0 \leqq x \leqq 4$

$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2 (0 \leqq x < 2) \\
-2x+8(2 \leqq x \leqq 4)
\end{array}
\right.
\end{eqnarray}$

(1)$f(f(x)) (0 \leqq x \leqq 4)$を求めよ。
(2)$f(f(x))=x$をみたすxをすべて求めよ。
投稿日:2020.12.13

<関連動画>

福田のわかった数学〜高校3年生理系040〜極限(40)関数の極限、色々な極限(10)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 色々な極限(10)
$\displaystyle \lim_{x \to \infty}(2x+3)\sin(\log(x+3)-$$\log x)$
を求めよ。
この動画を見る 

ハルハルさんの積分問題(準備) 難易度高めの最後まで気が抜けない!!

アイキャッチ画像
単元: #三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$K=\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{dx}{\sin\ x-2\cos\ x+3}$
この動画を見る 

【数Ⅲ】【関数と極限】数列{(x/x²+2p)^n}がすべての実数xに対して収束するとき、pの値の範囲を求めよ。ただし、p>0とする。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$\dfrac{x}{x²+2p}^n$}が
すべての実数xに対して収束するとき、pの値の範囲を求めよ。
ただし、p>0とする。
この動画を見る 

福田の数学〜千葉大学2023年第4問〜関数の増減と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 2つの実数$a$,$b$は0<$b$<$a$を満たすとする。関数
$f(x)$=$\displaystyle\frac{1}{b}\left(e^{-(a-b)x}-e^{-ax}\right)$
の最大値を$M(a,b)$、最大値をとるときの$x$の値を$X(a,b)$と表す。ここで、$e$は自然対数の底である。
(1)$X(a,b)$を求めよ。
(2)極限$\displaystyle\lim_{b \to +0}X(a,b)$ を求めよ。
(3)極限$\displaystyle\lim_{b \to +0}M(a,b)$ を求めよ。
この動画を見る 

【概要欄に正確な文章と説明の補足】大学入試問題#76 京都大学(2007) 数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。

出典:2007年京都大学 入試問題
この動画を見る 
PAGE TOP