問題文全文(内容文):
(1) $f(x)=x^2$の$x=2$における微分係数を求めよ。
(2) $\displaystyle \lim_{ x \to 3 }$$(x^2-2x+4)$
(3) $\displaystyle \lim_{ x \to -3 }$$\frac{x^2-9}{x+3}$
(4) $\displaystyle \lim_{ x \to 3 }$$\frac{2x}{x-5}$
(5) $\displaystyle \lim_{ x \to 0 }$$\frac{1}{x}$$(\frac{1}{x-1}+1)$
(1) $f(x)=x^2$の$x=2$における微分係数を求めよ。
(2) $\displaystyle \lim_{ x \to 3 }$$(x^2-2x+4)$
(3) $\displaystyle \lim_{ x \to -3 }$$\frac{x^2-9}{x+3}$
(4) $\displaystyle \lim_{ x \to 3 }$$\frac{2x}{x-5}$
(5) $\displaystyle \lim_{ x \to 0 }$$\frac{1}{x}$$(\frac{1}{x-1}+1)$
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $f(x)=x^2$の$x=2$における微分係数を求めよ。
(2) $\displaystyle \lim_{ x \to 3 }$$(x^2-2x+4)$
(3) $\displaystyle \lim_{ x \to -3 }$$\frac{x^2-9}{x+3}$
(4) $\displaystyle \lim_{ x \to 3 }$$\frac{2x}{x-5}$
(5) $\displaystyle \lim_{ x \to 0 }$$\frac{1}{x}$$(\frac{1}{x-1}+1)$
(1) $f(x)=x^2$の$x=2$における微分係数を求めよ。
(2) $\displaystyle \lim_{ x \to 3 }$$(x^2-2x+4)$
(3) $\displaystyle \lim_{ x \to -3 }$$\frac{x^2-9}{x+3}$
(4) $\displaystyle \lim_{ x \to 3 }$$\frac{2x}{x-5}$
(5) $\displaystyle \lim_{ x \to 0 }$$\frac{1}{x}$$(\frac{1}{x-1}+1)$
投稿日:2019.01.03