問題文全文(内容文):
${{}_n \mathrm{ C }_0}^2+{{}_n \mathrm{ C }_1}^2+{{}_n \mathrm{ C }_2}^2+\cdots + {{}_n \mathrm{ C }_n}^2=\dfrac{(2n)!}{(n!)^2}$
を証明してください。
${{}_n \mathrm{ C }_0}^2+{{}_n \mathrm{ C }_1}^2+{{}_n \mathrm{ C }_2}^2+\cdots + {{}_n \mathrm{ C }_n}^2=\dfrac{(2n)!}{(n!)^2}$
を証明してください。
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${{}_n \mathrm{ C }_0}^2+{{}_n \mathrm{ C }_1}^2+{{}_n \mathrm{ C }_2}^2+\cdots + {{}_n \mathrm{ C }_n}^2=\dfrac{(2n)!}{(n!)^2}$
を証明してください。
${{}_n \mathrm{ C }_0}^2+{{}_n \mathrm{ C }_1}^2+{{}_n \mathrm{ C }_2}^2+\cdots + {{}_n \mathrm{ C }_n}^2=\dfrac{(2n)!}{(n!)^2}$
を証明してください。
投稿日:2025.06.25





