同志社 数列の和 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

同志社 数列の和 Mathematics Japanese university entrance exam

問題文全文(内容文):
$n=1,2,3…$
$a_{n}=\displaystyle \frac{4N+3}{n(n+1)(n+2)}=$
初項から第$n$項までの和を求めよ

出典:同志社大学 過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n=1,2,3…$
$a_{n}=\displaystyle \frac{4N+3}{n(n+1)(n+2)}=$
初項から第$n$項までの和を求めよ

出典:同志社大学 過去問
投稿日:2019.01.15

<関連動画>

福田の数学〜北里大学2021年医学部第2問〜条件が複雑な重複順列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $n$ を正の整数とし、1,2,3,4,5,6の6個の数字から同じ数字を繰り返し用いることを許して$n$桁の整数をつくる。このような整数のうち、1が奇数個用いられるものの総数を$A_n$、それ以外のものの総数を$B_n$とする。
また、1か6がいずれも奇数個用いられるものの総数を$C_n$とする。次の問いに答えよ。
(1)$A_4$を求めよ。
(2)正の整数$n$に対して、$A_{n+1}$を$A_n$と$B_n$を用いて表せ。
(3)正の整数$n$に対して、$A_n$と$B_n$を求めよ。
(4)$p$を定数とする。$X_1=p$,$X_{n+1}=2X_n+6^n$($n$=1,2,3,...)で定められる
数列を$\left\{X_n\right\}$とする。正の整数$n$に対して、$X_n$を$n$と$p$を用いて表せ。
(5)正の整数$n$に対して、$C_n$を求めよ。

2021北里大学医学部過去問
この動画を見る 

【数B】【数列】漸化式3 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列 $\{a_n\}$ の一般項を求めよ。
$a_1$ = $1$, $a_{n+1} = 2a_n + 3n $
この動画を見る 

東北大文系 虚数のナイスな問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#数列#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
pは0でない実数である.$x^2-px+5p=0$の解を$\alpha,\beta$とする.
(1)$\alpha^5+\beta^5=p\5$となるpを求めよ.
(2)$\alpha$は虚数で$\alpha^5$が実数となるpを求めよ.

東北大文系過去問
この動画を見る 

【高校数学】 数B-74 和の記号Σ(シグマ)③

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の第$k$項,および初項から第$n$項までの和を求めよう.

①$3^2,6^2,9^2,・・・$

②$2・2,4・5,6・8,・・・$

③$1,1+2,1+2+3,・・・$
この動画を見る 

漸化式 山梨大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 山梨大学 過去問

$a_1=6$
$a_{n+1}=\frac{n+3}{n+1}a_n+1$
$b_n=\frac{a_n}{(n+1)(n+2)}$
この動画を見る 
PAGE TOP