いろんな要素いっぱいの良問 日本医科大 - 質問解決D.B.(データベース)

いろんな要素いっぱいの良問 日本医科大

問題文全文(内容文):
$\left(\frac{3}{2}x+\frac{3}{2}x+1 \right)^{n+2}$
を展開したときの$x^3$の係数を$Am$とする。
①$\displaystyle \lim_{ n \to x } \dfrac{1}{n^4}\displaystyle \sum_{k=1}^n A_k$
②$\displaystyle \lim_{ n \to (x) } \displaystyle \sum_{k=1}^n \dfrac{1}{A_n}$

日本医科大過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\left(\frac{3}{2}x+\frac{3}{2}x+1 \right)^{n+2}$
を展開したときの$x^3$の係数を$Am$とする。
①$\displaystyle \lim_{ n \to x } \dfrac{1}{n^4}\displaystyle \sum_{k=1}^n A_k$
②$\displaystyle \lim_{ n \to (x) } \displaystyle \sum_{k=1}^n \dfrac{1}{A_n}$

日本医科大過去問
投稿日:2023.06.04

<関連動画>

【数Ⅱ】【式と証明】不等式の証明7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0,b>0,c>0のとき、(a+b)(b+c)(c+a)≧8abc が成り立つことを証明せよ。また、等号が成り立つのはどのようなときか。
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^4+x^2+1)^{101}$を$x^3-1$で割った余りを求めよ.
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2024}+ax^6+bx^4+cx+2\ $が
$x^4+x^2+1$で割り切れるような整数a,b,cを求めよ

この動画を見る 

19東京都教員採用試験(数学:相加相乗平均)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣(1)
x>0のとき
$\frac{x^2+x+196}{x+1}$
の最小値と、そのときのxの値を求めよ。
この動画を見る 

【数Ⅱ】二項定理を覚えられない人へ

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
二項定理を覚えられない人へ
この動画を見る 
PAGE TOP