福田の1.5倍速演習〜合格する重要問題096〜早稲田大学2020年度理工学部第3問〜水の問題 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題096〜早稲田大学2020年度理工学部第3問〜水の問題

問題文全文(内容文):
$\Large\boxed{3}$ 曲線 x=g(y)のy≧0の部分とx軸上の線分0≦x≦g(0)のなす曲線をCとし、Cをy軸のまわりに1回転してできる容器をVとする。ただし、g(y)はy≧0で定義された正の関数とする。Vに毎秒一定量vの水を注ぐとする。t秒後のV内の水位をy=h(t)とするとき、以下の問に答えよ。
(1)水位が一定の速さで上昇するとき、g(y)は定数関数であることを示せ。
(2)g(y)=$e^y$のとき、h(t)を求めよ。

2020早稲田大学理工学部過去問
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 曲線 x=g(y)のy≧0の部分とx軸上の線分0≦x≦g(0)のなす曲線をCとし、Cをy軸のまわりに1回転してできる容器をVとする。ただし、g(y)はy≧0で定義された正の関数とする。Vに毎秒一定量vの水を注ぐとする。t秒後のV内の水位をy=h(t)とするとき、以下の問に答えよ。
(1)水位が一定の速さで上昇するとき、g(y)は定数関数であることを示せ。
(2)g(y)=$e^y$のとき、h(t)を求めよ。

2020早稲田大学理工学部過去問
投稿日:2023.02.02

<関連動画>

福田の数学〜東京工業大学2023年理系第1問〜定積分の値の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$の整数部分を求めよ。

2023東京工業大学理系過去問
この動画を見る 

大学入試問題#820「初手は見えるが、次の手は?」 #奈良教育大学(2023) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos^3\ x}{\sqrt{ 1+\sin^2 }} dx$

出典:2023年奈良教育大学 入試問題
この動画を見る 

大学入試問題#559「解法色々」 筑波大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^2x\ \cos2x\ dx$

出典:2020年筑波大学 入試問題
この動画を見る 

【数Ⅲ】【積分とその応用】定積分の種々の問題6 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
(1) $\displaystyle f(x)=x+\int_0^2f(t)e^t~dt$
(2) $\displaystyle f(x)=\sin x-\int_0^\frac\pi3\{f(t)-\frac\pi3\}\sin t~dt$
この動画を見る 

【数Ⅲ-158】定積分で表された関数①

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。

①$\int_a^x \frac{t}{1+e^{2t}}dt$

➁$\int_0^{x} (x-t)e^{2t}dt$

③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
この動画を見る 
PAGE TOP