福田の一夜漬け数学〜数列・シグマ記号(2)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・シグマ記号(2)〜高校2年生

問題文全文(内容文):
次の和を求めよ。
(1)$2^2+4^2+6^2+8^2+\cdots+(2n)^2$
(2)$1・2・3+2・3・5$$+3・4・7+$$4・5・9+$$\cdots+n(n+1)(2n+1)$


次の数列の初項から第n項までの和を求めよ。
(1)$2, 2+4, 2+4+6,$$ 2+4+6+8,\cdots$
(2)$1^2+1・2+2^2,$$ 2^2+2・3+3^2,$$ 3^2+3・4+4^2,\cdots$
(3)$1, 11, 111, 1111,\cdots$


次の数列の和を求めよ。
(1)$1・n, 3(n-1), 5(n-2),$$\cdots$$, (2n-3)・2$$, (2n-1)・1$
(2)$1^2・n, 2^2(n-1), 3^2(n-2),$$\cdots$$, (n-1)^2・2$$, n^2・1$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の和を求めよ。
(1)$2^2+4^2+6^2+8^2+\cdots+(2n)^2$
(2)$1・2・3+2・3・5$$+3・4・7+$$4・5・9+$$\cdots+n(n+1)(2n+1)$


次の数列の初項から第n項までの和を求めよ。
(1)$2, 2+4, 2+4+6,$$ 2+4+6+8,\cdots$
(2)$1^2+1・2+2^2,$$ 2^2+2・3+3^2,$$ 3^2+3・4+4^2,\cdots$
(3)$1, 11, 111, 1111,\cdots$


次の数列の和を求めよ。
(1)$1・n, 3(n-1), 5(n-2),$$\cdots$$, (2n-3)・2$$, (2n-1)・1$
(2)$1^2・n, 2^2(n-1), 3^2(n-2),$$\cdots$$, (n-1)^2・2$$, n^2・1$
投稿日:2018.04.27

<関連動画>

高専数学 微積II #11 級数の和

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
級数
$\displaystyle \sum_{n=1}^{\infty}\dfrac{1}{n^2+3n+2}$
の和を求めよ.
この動画を見る 

整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とするとき、
$2^{3n-2}+3^n$は5の倍数であることを
数学的帰納法によって証明せよ。

会津大過去問
この動画を見る 

練習問題2(数検1級1次レベル? 3項間漸化式)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=-1,a_2=1$
$a_{n+2}+2a_{n+1}+4a_n=0$
一般項$a_n$を求めよ
この動画を見る 

【高校数学】 数B-69 等比数列とその和⑤

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の等比数列の初項と公比を求めよう.

①初項から第3項までの和が3,初項から第6項までの和が27

②第3項が4,初項から第3項までの和が7
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第4問〜数列の文章題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$座標平面上でx座標とy座標がいずれも整数である点を格子点と呼ぶ。それぞれ
の正の整数nについて、4つの格子点$A_n(n,n),\ B_n(-n,n),\ C_n(-n,-n),\ D_n(n,-n)$
が作る正方形をJ_nとする。また、$(n-1,n)$にある格子点を$P_n$とする。
$\left\{a_k\right\}$を初項$a_1$が$-56$で、交差が$\frac{1}{4}$の等差数列とし、数列$\left\{a_k\right\}$の各項を以下の
ようにして格子点上順番に割り当てていく。
1.初項$a_1$は格子点$P_1$に割り当てる。
2.$a_l$が正方形$J_m$の周上にある格子点で$A_m$以外の点に割り当てられているときには、
$J_m$の周上でその点から半時計回り(右図(※動画参照)での矢印が示す方向)に一つ移動
した格子点に$a_{l+1}$を割り当てる。
3$.a_l$が格子点$A_m$に割り当てられているときには、$a_{l+1}$を格子点$P_{m+1}$に割り当てる。

全体としては、図に示されているようにして、格子点をたどっていくことになる。
(1)格子点$P_n$に割り当てられる数列$\left\{a_k\right\}$の項を$p_n$とし、格子点$C_n$に割り当て
られる数列$\left\{a_k\right\}$の項を$c_n$とする。
このとき、$p_4=-\boxed{\ \ アイ\ \ }, c_4=-\frac{\boxed{\ \ ウエオ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(2)上で定めた$p_n$を用いて、$q_n$を数列$\left\{p_n\right\}$の初項$p_1$から第n項$p_n$までの和とする。
$q_n$をnを使って表すと、$q_n=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}n^3-\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シ\ \ }}n$である。
(3)上で定めた$q_n$が最小値を取るのは、$n=\boxed{\ \ ス\ \ }$または$n=\boxed{\ \ セ\ \ }$のときであり、
その値は#$-\boxed{\ \ ソタチ\ \ }$である。

2021慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP