【有理数とは!】平方根(有理数と無理数)前編:教科書順で内容確認~全国入試問題解法 - 質問解決D.B.(データベース)

【有理数とは!】平方根(有理数と無理数)前編:教科書順で内容確認~全国入試問題解法

問題文全文(内容文):
平方根(有理数と無理数)に関して解説していきます.
単元: #数学(中学生)#中3数学#平方根#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根(有理数と無理数)に関して解説していきます.
投稿日:2022.06.15

<関連動画>

【#3】【因数分解100問】基礎から応用まで!(21)〜(30)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(21)$x^2-4x+4-y^2$
(22)$x^2-y^2+6y-9$
(23)$4a^2-4b^2+4b-1$
(24)$x^2-2xy+y^2-4z^2$
(25)$(x+2)^2+7(x+2)+6$
(26)$(x+y)^2-x-y-12$
(27)$6(x-y)^2-5(x-y)-4$
(28)$(a+b)^2+10c(a+b)+25c^2$
(29)$(x+y+2)(x+y-3)-6$
(30)$(x+2y)(x+2y-2z)-8z^2$
この動画を見る 

出題者の意図を汲みとるだけの問題。灘高の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$①(2\sqrt2-3)^2=?$
$②\sqrt{\sqrt{(10-7\sqrt2})^2-\sqrt{(7-5\sqrt2})^2}=?$
?を求めよ.

灘高校過去問
この動画を見る 

昭和(医)3次方程式解と係数の関係・要工夫

アイキャッチ画像
単元: #数Ⅰ#数と式#大学入試過去問(化学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-x^2-x-1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\dfrac{1}{(\alpha-2)(\beta-2)},\dfrac{1}{(\beta-2)(\delta-2)},$
$\dfrac{1}{(\delta-2)(\alpha-2)}$
を解にもつ3次方程式(3次の係数は1)求めよ.
この動画を見る 

factorization : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

単元: #中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$(x^2 - 2x - 3)^2 + 13(x^2 - 2x -3) - 90 を因数分解せよ$
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)実数全体で定義され、実数の値をとる関数$f(x)$に対する次の条件$p$を考える。
$p:「K以上の全ての実数xに対してf(x) \geqq 1」$が成り立つような実数Kが存在する。
$(\textrm{i})$次に挙げた関数$(\textrm{a})~(\textrm{d})$のそれぞれについて、pを満たすならばo、pを
満たさないならばxをマークせよ。
$(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x$
$(\textrm{ii})$次の条件がpの否定になるように、$\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }$のそれぞれの選択肢から、
あてはまるものを選べ。
・$「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }$実数に対して$\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }$

$\boxed{\ \ あ\ \ }$の選択肢$:(\textrm{a})K$以上の  $(\textrm{b})K$未満の
$\boxed{\ \ い\ \ }$の選択肢:$(\textrm{a})$すべての  $(\textrm{b})$ある
$\boxed{\ \ う\ \ }$の選択肢$:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1$
$\boxed{\ \ え\ \ }$の選択肢$:(\textrm{a})$どんな実数Kについても成り立つ  $\\(\textrm{b})$成り立つような実数Kが存在する 
$(\textrm{iii})$関数$f(x)$に対して、$g(x)=2f(x)$で関数$g(x)$を定める。次に挙げた命題$(\textrm{A})~(\textrm{D})$
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。
$(\textrm{A})f(x)$が$p$を満たすならば、$g(x)$も$p$を満たす。
$(\textrm{B})g(x)$が$p$を満たすならば、$f(x)$もpを満たす。
$(\textrm{C})f(x)$が$p$を満たさないならば、$g(x)$もpを満たさない。
$(\textrm{D})f(x)$がpを満たさないならば、$g(x)$も$p$を満たす。

2021上智大学理工学部過去問
この動画を見る 
PAGE TOP