【数Ⅱ】中高一貫校問題集3(数式・関数編)376:図形と式:円と直線:定点通過の解法! x²+y²-2mx-2m-2=0がmに関係なく通る点は? - 質問解決D.B.(データベース)

【数Ⅱ】中高一貫校問題集3(数式・関数編)376:図形と式:円と直線:定点通過の解法! x²+y²-2mx-2m-2=0がmに関係なく通る点は?

問題文全文(内容文):
4S数学Ⅱ・図形と方程式・問題379
x²+y²-2mx-2m-2=0がmに関係なく通る点を求めよ。
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
4S数学Ⅱ・図形と方程式・問題379
x²+y²-2mx-2m-2=0がmに関係なく通る点を求めよ。
投稿日:2020.09.25

<関連動画>

福田の1.5倍速演習〜合格する重要問題059〜慶應義塾大学2019年度薬学部第1問(7)〜球に内接する四角錐の体積の最大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (7)正四角錐ABCDEの全ての頂点は半径3の球面上にある。
この正四角錐の体積Vの最大値は$\boxed{\ \ ソ\ \ }$である。

2019慶應義塾大学薬学部過去問
この動画を見る 

福田のわかった数学〜高校2年生031〜円と放物線の位置関係(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円と放物線の位置関係(3)
円$x^2+(y-a)^2=r^2$ $(a \gt 0,r \gt 0) \ldots①$
放物線$ y=\displaystyle\frac{1}{2}x^2 \ldots②$
が次の条件を満たすとき$a$の範囲、$r$を$a$で表せ。
(1)原点$\rm O$で接し、かつ他に共有点を持たない。
(2)異なる2点で接する。
この動画を見る 

広島大 円の方程式 三角比 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
2つの円
$x^2+y^2+(2\sqrt2sinθ)x-\frac{\sqrt{17}}{2}y+sin^2θ+$
$\frac{17}{16}=0$
$x^2+y^2=\frac{9}{16} \quad (0^\circ < θ < 180^\circ)$
が共有点をもたないようなθの範囲を求めよ。
この動画を見る 

福田の数学〜杏林大学2022年医学部第3問〜空間図形と球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の3点A(-1,0),B(1,0),Cを頂点とする三角形について考える。
点Cのy座標は正であり、原点をOとして、以下の問いに答えよ。
$(\textrm{a})\angle BAC \lt \angle ABC$を満たす場合、点Cは第$\boxed{ア}$象限に存在する。
$(\textrm{b})\angle ABC \lt \angle ACB$を満たす場合、点Cは$\boxed{イ}$の$\boxed{ウ}$に存在する。
$(\textrm{c})\angle ACB \lt \frac{\pi}{2}$を満たす場合、点Cは$\boxed{エ}$の$\boxed{オ}$に存在する。
$(\textrm{d})\angle BAC \leqq \angle ABC \leqq ACB \leqq \frac{\pi}{2}$を満たす点Cが存在する領域(境界を含む)
の面積は$\frac{\boxed{カ}}{\boxed{キク }}\pi-\frac{\sqrt{\boxed{ケ }}}{\boxed{コ }}$である。
$\boxed{イ},\boxed{エ}$の解答群
①点Aを中心とし点Bを通る円
②点Bを中心とし点Aを通る円
③線分ABを直径とする円
④離心率が0.5で2点O,Aを焦点とする楕円
⑤離心率が0.5で2点O,Bを焦点とする楕円
⑥離心率が0.5で2点A,Bを焦点とする楕円
⑦線分ABを一辺にもち、重心のy座標が正である正三角形
⑧線分ABを一辺にもち、重心のy座標が正である正方形

$\boxed{ウ},\boxed{オ}$の解答群
①内部 ②周上 ③外部 ④重心

(2)座標空間内の4点$A(-1,0,0),B(1,0,0),C(s,t,0),D$を原点とし、
$\angle BAC \lt \angle ABC \lt \angle ACB$
を満たす四面体を考える。$t \gt 0$であり、点Dのz座標は正であるとする。
$(\textrm{a})\angle ADC=\frac{\pi}{2}$を満たす場合、点Dは$\boxed{サ }$に存在する。
$(\textrm{b})\angle ADC=\angle BDC=\frac{\pi}{2}$を満たす場合、
点Dのx座標はsであり、点Dは$(s,\boxed{シ},0)$を中心とする
半径$\boxed{ス}$の円周上にある。
$(\textrm{c})$以下では$t=\frac{4}{3}$とする。設問(1)の結果から、点Cのx座標sは
$\boxed{セ} \lt s \lt -\boxed{ソ}+\frac{\boxed{タ}\sqrt{\boxed{チ}}}{\boxed{ツ}}$の範囲をとりうる。この範囲でsが変化
するとき、$\angle ADB=\angle ADC =\angle BDC=\frac{\pi}{2}$を満たす四面体ABCDの体積は
$s=\frac{\boxed{テ}}{\boxed{エ}}$のとき最大値$\frac{\boxed{ナ}}{\boxed{二ヌ }}$をとる。

2022杏林大学医学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{7}}\ i$を虚数単位とする。$\alpha=-1+i$とし、zは次の条件をともに満たす複素数とする。
条件1.$\frac{z-\alpha}{z-\bar{\alpha}}$の実部は0である。
条件2.zの虚部は0以上である。
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で
囲まれる部分の面積は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\pi$である。
また、$w=\frac{iz}{z+1}$で表される点wがとりうる値全体の集合を表す図形と、
図形Cで囲まれる部分の面積は$\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$である。

2022早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP