sin cos - 質問解決D.B.(データベース)

sin cos

問題文全文(内容文):
値を求めよ
$\sin75^{\circ}+\sin120^{\circ}-\cos150^{\circ}+\cos165^{\circ}$
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
値を求めよ
$\sin75^{\circ}+\sin120^{\circ}-\cos150^{\circ}+\cos165^{\circ}$
投稿日:2024.09.01

<関連動画>

cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。

数学入試問題過去問
この動画を見る 

【高校数学】 数Ⅱ-114 三角関数を含む方程式・不等式⑦

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0 \leqq x \lt 2π$のとき、次の方程式を書こう。

①$2 \cos 2x+1=4\sin x$

②$\sin2x=\cos x$
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$
サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である$\theta$
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと
ペナルティーエリアの左端までの距離をh(ただし、$h \lt a$とする)、Pからゴールライン
をx、Pの正面から右のゴールポストまでの角度を$\alpha$、Pの正面から左のゴールポスト
までの角を$\beta$としたとき、次頁の解放の文章を完成させなさい。

(解法)$\tan\theta$を最も大きくするxを求める問題と考えることができる。
$\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}$
$\tan\theta$の逆数を考えると、相加相乗平均の定理より
$\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}$
であり、$\frac{1}{\tan\theta}$が最小、すなわち$\tan\theta$が最大となるのは$x=\sqrt{\boxed{\ \ ケ\ \ }}$のときである。

(解法終わり)
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、
$x=\sqrt{\boxed{\ \ コ\ \ }}m$のときに、$\theta$が最も大きくなることが分かる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

【高校数学】 数Ⅱ-113 加法定理の応用③・半角の公式編

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\sin^2 \displaystyle \frac{\alpha}{2}=$

②$\cos ^2 \displaystyle \frac{\alpha}{2}=$

③$\tan ^2 \displaystyle \frac{\alpha}{2}=$

◎$\displaystyle \frac{3}{2}π \lt \alpha \lt 2π$で、$\sin \alpha=-\displaystyle \frac{3}{5}$のとき、次の値を求めよう。

④$\sin \displaystyle \frac{\alpha}{2}=$

⑤$\cos \displaystyle \frac{\alpha}{2}=$

⑥$\tan \displaystyle \frac{\alpha}{2}=$
この動画を見る 

福田のわかった数学〜高校2年生083〜三角関数(23)18°系の三角比(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$三角関数(22) 18°系の三角比(3)
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式f(x)を求めよ。

(2)$\alpha=18°$のとき次の等式を示せ。
$\cos\alpha\cos3\alpha\cos7\alpha\cos9\alpha=\frac{5}{16}$
この動画を見る 
PAGE TOP