立方体の中の三角形の面積を求める 明秀学園日立高校(茨城) - 質問解決D.B.(データベース)

立方体の中の三角形の面積を求める 明秀学園日立高校(茨城)

問題文全文(内容文):
△GMN=?
*図は動画内参照

明秀学園日立高等学校
単元: #数学(中学生)#中2数学#立体図形#立体切断#立体図形その他#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△GMN=?
*図は動画内参照

明秀学園日立高等学校
投稿日:2022.08.15

<関連動画>

【受験算数】立体切断演習問題その14「断面部の体積を求める問題4」

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断
教材: #SPX#6年算数W-支援#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
下の図の立体は、1辺12cmの立方体です。AP=9cm, AQ=9cm, FR=6cmです。
(1) Rを通りQPと平行な直線が、CGと交わる点をSとします。GSの長さは何cmですか。
(2) PQをQの方向へ延長した直線が、HEをEの方向へ延長した直線と交わる点をTとします。ETの長さは何cmですか。
(3) TRがEFと交わる点をUとします。EUの長さは何cmですか。
(4) Pを通りTUと平行な直線が、CDと交わる点をVとします。DVの長さは何cmですか。
この動画を見る 

正四角錐を切断  筑波大学附属高校

アイキャッチ画像
単元: #数学(中学生)#立体図形#立体切断#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
すべての辺の長さが等しい正四角錐
点P,Qは中点
3点A,P,Qを含む面で切断
AR=?
*図は動画内参照

筑波大学附属高等学校
この動画を見る 

【受験算数】立体切断演習問題その12「断面部の体積を求める問題2」

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断
教材: #SPX#6年算数W-支援#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右下の図の立体は、1辺12cmの立方体です。AP=6cm, AQ=8cm, DR=4cmです。
PQをQの方向へ延長した直線が、HEをEの方向へ延長した直線と交わる点をSとします。ESの長さは何cmですか。
この動画を見る 

【高校受験対策】数学-死守24

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#円#立体図形#立体切断#立体図形その他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-7+9$を計算しなさい.

②$1+\left(-\dfrac{5}{6}\right)\div \dfrac{1}{3}$を計算しなさい.

③$8(x - y) + 6(x - 2y)$を計算しなさい.

④$\sqrt{27} - \dfrac{6}{\sqrt3}$を計算しなさい.

⑤$x(x + 2) - (x + 4)(x - 3)$を計算しなさい.

⑥絶対値が$2.5$より小さい整数はいくつあるか,求めなさい.

⑦2つの方程式$3x + y = 11$と$x + 3y = 1$両方にあてはまる$x,y$の値の組がある.
このとき,$x^2-y^2$の値を求めなさい.

⑧右の図のおうぎ形$OAB$は,半径$3cm$,中心角$90°$である.
このおうぎ形$OAB$を, $AD$を通る直線$\ell$を軸として1回転させてできる
立体の体積と表面積を求めなさい.
ただし,円周率は$\pi$とする.

⑨右の表は,ある中学校における男子15人の50m走の記録を
度数分布表に表したものである.
この表の8.5秒以上9.0秒未満の階級の相対度数を求めなさい.

図は動画内参照
この動画を見る 

2024年広尾学園中算数大問①(1)~(6)中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#規則性(周期算・方陣算・数列・日暦算・N進法)#文章題#単位・比と割合・比例・反比例#平面図形#角度と面積#立体図形#立体切断#体積・表面積・回転体・水量・変化のグラフ
指導講師: 重吉
問題文全文(内容文):
※図は動画内参照
(1) 次の計算をしなさい。
$253\div8+25.3\times3.25+11\times2.3\times5.5$

(2) $\dfrac{1}{1+\dfrac{1}{\boxed{ ア }+\dfrac{1}{\boxed{ イ }}}}=\dfrac{3}{5}$ となるように、$\boxed{ ア }$、$\boxed{ イ }$に当てはまる整数を求めなさい。

(3) 広尾小学校のある学年で、算数と国語についてそれぞれ「好きか、好きではないか」のどちらかについて調査をしました。調査の結果、算数が好きな児童の数は学年全体の人数の$\dfrac{1}{3}$、国語が好きな児童の数は学年全体の人数の$\dfrac{2}{5}$、算数も国語も好きな児童の数は算数の好きな児童の数の$\dfrac{3}{10}$であり、算数も国語も好きではない児童の数は44人でした。算数も国語も好きな児童の数を求めなさい。

(4) 時計の長針と短針について、4時と5時の間で長針と短針が反対向きに一直線になるときの時刻は4時何分か求めなさい。

(5) 右の図は、正方形の図の中に同じ大きさの四分円を4つ描いた図です。斜線部分の面積を求めなさい。ただし円周率は3.14とします。

(6) 図1のような長方形があり、上、正面、横の面をそれぞれ面ア、面イ、面ウとします。面ア、面イにそれぞれ平行な面でこの直方体を切断すると、できた4つの直方体の表面積の合計は、もとの直方体の表面積よりも1400 ㎠大きくなります(図2)。同様に面イと面ウにそれぞれ平行な面で切断すると、できた4つの直方体の表面積の表面積の合計は、もとの直方体の表面積よりも1000 ㎠大きくなり、面アと面ウにそれぞれ平行な面で切断すると、もとの直方体の表面積よりも1200 ㎠大きくなります。もとの直方体の表面積を求めなさい。
この動画を見る 
PAGE TOP