福田の数学〜青山学院大学2022年理工学部第5問〜切り取られる弦の中点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2022年理工学部第5問〜切り取られる弦の中点の軌跡

問題文全文(内容文):
xy平面上に、円$C:(x-5)^2+y^2=5$と直線$l:y=mx$がある。
(1)Cとlが共有点を持つようなmの値の範囲を求めよ。
mの値が(1)で求めた範囲にあるとき、Cとlの2つの共有点をP,Qとし、
線分PQの中点をMとする。ただし、lがCに接するときはP=Q=Mとする。
(2)点Mの座標をmを用いて表せ。
(3)mが(1)で求めた範囲を動くときの点Mの軌跡を求め、図示せよ。
(4)原点からCに引いた2本の接線と(3)で求めた点Mの軌跡で囲まれた図形を
Dとする。図形Dをx軸の周りに1回転してできる回転体の体積Vを求めよ。

2022青山学院大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
xy平面上に、円$C:(x-5)^2+y^2=5$と直線$l:y=mx$がある。
(1)Cとlが共有点を持つようなmの値の範囲を求めよ。
mの値が(1)で求めた範囲にあるとき、Cとlの2つの共有点をP,Qとし、
線分PQの中点をMとする。ただし、lがCに接するときはP=Q=Mとする。
(2)点Mの座標をmを用いて表せ。
(3)mが(1)で求めた範囲を動くときの点Mの軌跡を求め、図示せよ。
(4)原点からCに引いた2本の接線と(3)で求めた点Mの軌跡で囲まれた図形を
Dとする。図形Dをx軸の周りに1回転してできる回転体の体積Vを求めよ。

2022青山学院大学理工学部過去問
投稿日:2022.09.30

<関連動画>

筑波大 4次関数 接点と交点 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93筑波大学過去問題
$f(x)=x^4-2x^2$
f(x)の接線がf(x)と接点以外に異なる2点で交わる条件。
又、接点、2交点の3点が等間隔になるときの接点のx座標
この動画を見る 

【高校数学】 数Ⅱ-11 分数式の計算④

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{1}{(a-b)(b-c)}+\displaystyle \frac{2}{(b-c)(c-a)}+\displaystyle \frac{3}{(c-a)(a-b)}$

②$\displaystyle \frac{1}{(x-y)(x-z)}+\displaystyle \frac{1}{(y-z)(y-x)}-\displaystyle \frac{1}{(z-x)(z-y)}$
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(2)〜折れ線の最小と内接円の半径

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#三角関数#点と直線#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

数学「大学入試良問集」【10−1 外接する円と軌跡】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#津田塾大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標平面上で点$(0,2)$を中心とする半径$1$の円を$C$とする。
$C$に外接し、$x$軸に接する円の中心$P(a,b)$が描く図形の方程式を求めよ。
この動画を見る 

13神奈川県教員採用試験(数学:4番 整式の割り算)

アイキャッチ画像
単元: #数Ⅱ#式と証明#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
4⃣$x^{2016}+x^7+1$を$x^2+1$で割った余りを求めよ。
この動画を見る 
PAGE TOP