【高校数学】対数①~logとは?対数の基礎~【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】対数①~logとは?対数の基礎~【数学Ⅱ】

問題文全文(内容文):
a^p=$M \Leftrightarrow p$=logaM
a:底 M:真数 p:指数 a>0,a≠1,M>0(真数条件)

【以下の問題に答えよ (動画内の問題】
(1)8$\displaystyle \frac{1}{3}$=2をp=logaMの形にせよ。

(2)log₁₀$\displaystyle \frac{1}{100000}$=-5をa^p=Mの形にせよ。

(3)log₅125を求めよ。
単元: #数Ⅱ#指数関数と対数関数#対数関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a^p=$M \Leftrightarrow p$=logaM
a:底 M:真数 p:指数 a>0,a≠1,M>0(真数条件)

【以下の問題に答えよ (動画内の問題】
(1)8$\displaystyle \frac{1}{3}$=2をp=logaMの形にせよ。

(2)log₁₀$\displaystyle \frac{1}{100000}$=-5をa^p=Mの形にせよ。

(3)log₅125を求めよ。
投稿日:2018.11.14

<関連動画>

福田のおもしろ数学344〜条件付き最小値問題と絶対値の処理

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\log_{ 4 }( x+2y)+\log_{ 4 } (x-2y)=1$のとき、$|x|ー|y|$の最小値を求めよ。
この動画を見る 

大学入試問題#13 自治医科大学(2021) 対数と整数問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y:$自然数
$1+log_x(y-2)=4\ log_{x^2}2+3\ log_{x^3}(y+6)$が成り立つとき$|x-y|$の最小値を求めよ。

出典:2021年自治医科大学 入試問題
この動画を見る 

福田の数学〜対数関数の最大値2通りの解を紹介〜慶應義塾大学2023年商学部第1問(1)〜対数関数の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)2つの正の実数x,yについて、$xy^2=10$のとき、$\log_{ 10 } x$,$\log_{ 10 } y$の最大値は$\dfrac{\fbox{ア}}{{\fbox{イ}}}$である。

2023慶應義塾大学商学部過去問

この動画を見る 

福田のわかった数学〜高校3年生理系081〜グラフを描こう(3)対数関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(3)

$y=x(\log x-1)^2$
のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

【n進法】同じ桁数になるようなもの?【京都大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
ある自然数を八進法、九進法、十進法でそれぞれ表したとき、桁数がすべて同じになった。このような自然数で最大のものを求めよ。ただし、必要なら次を用いてよい。
0.3010<log₁₀2<0.3011 , 0.4771<log₁₀3<0.4772
この動画を見る 
PAGE TOP