【今見るべき公式集!】高校までに学ぶ「因数分解」の公式~全国入試問題解法 - 質問解決D.B.(データベース)

【今見るべき公式集!】高校までに学ぶ「因数分解」の公式~全国入試問題解法

問題文全文(内容文):
中学校、高等学校までに学ぶ「因数分解の公式」一覧の解説
①$ma\pm mℓ=m(a \pm ℓ)$
②$x^2 \pm 2xy+y^2=(x \pm y)^2$
③$x^2-y^2=(x-y)(x+y)$
④$x^2 +(a+ℓ) x + aℓ=(x + a)(x+ℓ)$
⑤$acx^2+(ad+ℓc)x+ℓd=(ax+ℓ)(cx+d)$
⑥$x^3\pm y^3=(x+y)(x^2\mp xy+y^2)$
⑦$a^2+ℓ^2+c^2+2aℓ+2ℓc+2ca=(a+ℓ+c)^2$
⑧$a^3\pm 3a^2ℓ+3aℓ^2\pmℓ^3=(a \pmℓ)^3$
⑨$a^3+ℓ^3+c^3-3aℓc=(a+ℓ+c)(a^2+ℓ^2c^2-ℓc-ca-aℓ)$
単元: #中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
中学校、高等学校までに学ぶ「因数分解の公式」一覧の解説
①$ma\pm mℓ=m(a \pm ℓ)$
②$x^2 \pm 2xy+y^2=(x \pm y)^2$
③$x^2-y^2=(x-y)(x+y)$
④$x^2 +(a+ℓ) x + aℓ=(x + a)(x+ℓ)$
⑤$acx^2+(ad+ℓc)x+ℓd=(ax+ℓ)(cx+d)$
⑥$x^3\pm y^3=(x+y)(x^2\mp xy+y^2)$
⑦$a^2+ℓ^2+c^2+2aℓ+2ℓc+2ca=(a+ℓ+c)^2$
⑧$a^3\pm 3a^2ℓ+3aℓ^2\pmℓ^3=(a \pmℓ)^3$
⑨$a^3+ℓ^3+c^3-3aℓc=(a+ℓ+c)(a^2+ℓ^2c^2-ℓc-ca-aℓ)$
投稿日:2021.05.23

<関連動画>

【数学】中3-7 因数分解②

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋め、計算せよ。
$a^2+2ab+b^2=$①____
$a^2-2ab+b^2=$②____
$a^2-b^2=$③____
$x^2+(a+b)x+ab=$④____
⑤$x^2-81=$
⑥$x^2+6x+9=$
⑦$x^2-8x+16=$
⑧$x^2+5x+6=$
⑨$x^2-18x+81=$
⑩$x^2-x-12=$
⑪$x^2-25y^2=$
⑫$x^2+12xy+36y^2=$
⑬$x^2+10x+16=$
⑭$16x^2-9y^2=$
⑮$x^2-x-2=$
⑯$x^2+2x-15=$
この動画を見る 

【よく見てみれば…!】因数分解:明治大学付属中野高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ (x^2+x)^2-x(x+1)-2 $を因数分解しなさい.

明大中野高校過去問
この動画を見る 

【中学数学】因数分解のテクニック~マル秘必殺技~ 3-3【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の式を因数分解せよ
$x^2-24x+60$
この動画を見る 

慶應義塾 B 2021最初の一問

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$(a^2-2a-6)(a^2-2a-17)+18$を因数分解せよ。

2021慶應義塾高等学校
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 
PAGE TOP