福田のおもしろ数学360〜1が連続1991個並ぶ数は素数か - 質問解決D.B.(データベース)

福田のおもしろ数学360〜1が連続1991個並ぶ数は素数か

問題文全文(内容文):
1が連続1991個並ぶ数は素数でないことを証明せよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1が連続1991個並ぶ数は素数でないことを証明せよ。
投稿日:2024.12.27

<関連動画>

数1

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$(m,n)$を求めよ.

①$m^2-n^2-2n=21$
②$m^3+n^3-3mn=3$
この動画を見る 

【数A】整数の性質:東京大学(理系)2003年 第4問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
この動画を見る 

自作 整数問題2

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n=k^4+k^2+1$
整数$(k,n)$をすべて求めよ.
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
pは素数

(p-1)!+1はpで割り切れることを示せ
この動画を見る 

割って余る問題 国学院高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
101と227をnで割ったときの余りが17になる自然数nのうち、最大のものを求めよ
この動画を見る 
PAGE TOP