【数A】【図形の性質】チェバメネラウス ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【図形の性質】チェバメネラウス ※問題文は概要欄

問題文全文(内容文):
(1):△ABCの辺AB、AC上に、それぞれ頂点と異なる点D、Eを取る時、等式【△ADE/△ABC】=【AD/AB】×【AE/AC】が成り立つことを証明せよ。
(2):△ABCの辺BCを2:3、辺CAを3:1、辺ABを1:2に内分する点をそれぞれD、E、Fとする時、次の値を求めよ。
(ア)△AFE/△ABC  (イ)△DEF/△ABC
△ABCの辺ABを2:3に内分する点をR、辺ACを5:6に内分する点をQとする。線分BQと線分CRの交点をOとする。直線AOと辺BCの交点をPとする。
(1)BP:PCを求めよ。  (2)△OBC:△ABCを求めよ。
△ABCの辺ABを2:1に内分する点をD、辺ACを3:1に内分する点をEとする。直線DEとBCの交点をPとする。
(1)BP:PCを求めよ。  (2)DP:PEを求めよ。
チャプター:

0:00 オープニング
0:05 チェバ・メネラウスの定理解説
4:15 1解説
8:30 2解説
11:22 3解説

単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1):△ABCの辺AB、AC上に、それぞれ頂点と異なる点D、Eを取る時、等式【△ADE/△ABC】=【AD/AB】×【AE/AC】が成り立つことを証明せよ。
(2):△ABCの辺BCを2:3、辺CAを3:1、辺ABを1:2に内分する点をそれぞれD、E、Fとする時、次の値を求めよ。
(ア)△AFE/△ABC  (イ)△DEF/△ABC
△ABCの辺ABを2:3に内分する点をR、辺ACを5:6に内分する点をQとする。線分BQと線分CRの交点をOとする。直線AOと辺BCの交点をPとする。
(1)BP:PCを求めよ。  (2)△OBC:△ABCを求めよ。
△ABCの辺ABを2:1に内分する点をD、辺ACを3:1に内分する点をEとする。直線DEとBCの交点をPとする。
(1)BP:PCを求めよ。  (2)DP:PEを求めよ。
投稿日:2025.02.14

<関連動画>

【高校数学】 数A-56 2つの円の位置関係と共通接線③

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つの円がTで内接している.
内側の円の接線が外側の円と交わる点を$A,B$とし,その接点を$P$とする.
このとき,$TP$は$\angle ATB$を2等分することを証明しよう.

図は動画内参照
この動画を見る 

【数A】互除法 よりも mod ! ②演習編

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$73x+45y=1$ の特殊解を求めよ。
この動画を見る 

【平面図形の基礎はこれ!】三角形の性質の基礎編1〔高校数学 数学〕

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
三角形の性質の基礎について解説します。
この動画を見る 

福田の数学〜早稲田大学2021年商学部第3問〜正の約数の総和が奇数になる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 次の設問に答えよ。
(1)$225$の全ての正の約数の和を求めよ。
(2)$2021$以下の正の整数で、すべての正の約数の和が奇数であるものの個数を求めよ。

2021早稲田大学商学部過去問
この動画を見る 

式の変形と三角形   よくありがちな間違い。

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^4+b^4=c^4+2a^2b^2$のとき
△ABCはどんな三角形か?
*図は動画内参照
この動画を見る 
PAGE TOP