連立2元4次方程式 - 質問解決D.B.(データベース)

連立2元4次方程式

問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
x^4+y^4=881
\end{array}
\right.
\end{eqnarray}$
これを解け.
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
x^4+y^4=881
\end{array}
\right.
\end{eqnarray}$
これを解け.
投稿日:2022.10.17

<関連動画>

【高校数学】絶対値の1次不等式まとめ 1-14.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

√6…

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{6\sqrt{6\sqrt{6 \cdots}}}$
この動画を見る 

2次関数 グラフと2次不等式4【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数$y=x^2+mx+2$が次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)この2次関数のグラフと$x$軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフと$x$軸の$x\lt -1$の部分が異なる2点で交わる。

放物線$y=x^2+2(m-1)x+5-m^2$が$x$軸の正の部分と負の部分のそれぞれと交わるように、定数$m$の値の範囲を定めよ。

2次方程式$x^2+2mx+2m+3=0$が次のような実数解をもつように、定数$m$の値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
この動画を見る 

小学生も解ける!!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle a + \angle b + \angle c + \angle d + \angle e=?$
この動画を見る 

【数学Ⅰ/高1の予習】展開の公式を利用する因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を因数分解せよ。
(1)$x^3+27$
(2)$16x^3-2y^3$
(3)$x^3-9x^2+27x-27$
この動画を見る 
PAGE TOP