【高校数学】三角関数⑥~三角方程式の応用~ 4-8【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】三角関数⑥~三角方程式の応用~ 4-8【数学Ⅱ】

問題文全文(内容文):
三角関数⑥

0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) sin(θ-$\displaystyle \frac{π}{6}$)=-$\displaystyle \frac{1}{2}$

(2) cos(θ+$\displaystyle \frac{π}{4}$)=$\displaystyle \frac{√3}{2}$
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数⑥

0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) sin(θ-$\displaystyle \frac{π}{6}$)=-$\displaystyle \frac{1}{2}$

(2) cos(θ+$\displaystyle \frac{π}{4}$)=$\displaystyle \frac{√3}{2}$
投稿日:2018.10.03

<関連動画>

三角関数 4STEP数Ⅱ257 三角比の相互関係2【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $tanθ=2$のとき,$\displaystyle \frac{1}{1+\sin θ}+\displaystyle \frac{1}{1-\sin θ}$の値を求めよ。

(2) $tanθ=5(0<θ<\frac{π}{2})$のとき,$\displaystyle \frac{1-\sin θ}{\cos θ}+\displaystyle \frac{\cos θ}{1-\sin θ}$の値を求めよ。

この動画を見る 

【FULL】定期テスト直前対策!図形と計量、三角関数解説動画フルパック流し【数I,数II】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)
指導講師: 理数個別チャンネル
問題文全文(内容文):
図形と計量、三角関数のまとめ動画です。
問題番号は数研出版4Step(4ステップ)I,IIに対応しています。
(数値がやや異なる問題もありますが、同じような解法で取り組める問題を参考番号として記載しております。)
この動画を見る 

【数Ⅱ】三角関数と方程式 3 三角関数の2次方程式【文字の置き換えをしたら範囲をチェック!】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
この動画を見る 

福田のわかった数学〜高校2年生071〜三角関数(10)三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(10) 解の個数\hspace{120pt}\\
\\
3\cos^2x-\sin x-a=0\hspace{100pt}\\
の0 \leqq x \leqq \frac{3\pi}{2}の範囲にある解の個数を、実数aの値によって分類せよ。
\end{eqnarray}
この動画を見る 

三角関数 4STEP数Ⅱ248 三角関数基本2【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
半径1cm,弧の長さ2cmの扇形の中心角は何ラジアンか。また,この扇形の面積を求めよ。
この動画を見る 
PAGE TOP