徳島大 連立漸化式 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

徳島大 連立漸化式 Mathematics Japanese university entrance exam

問題文全文(内容文):
$a_{1}=1,b_{1}=0$
$a_{n+1}=5a_{n}+4b_{n}$
$b_{n+1}=a_{n}+5b_{n}$

(1)
$a_{n+1}+ \alpha b_{n+1}=\beta (a_{n}+\alpha b_{n})$となる$\alpha,\beta$を2組求めよ

(2)
$a_{n},b_{n}$の一般項

(3)
$\displaystyle \sum_{k=1}^n ak$

出典:2012年徳島大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1,b_{1}=0$
$a_{n+1}=5a_{n}+4b_{n}$
$b_{n+1}=a_{n}+5b_{n}$

(1)
$a_{n+1}+ \alpha b_{n+1}=\beta (a_{n}+\alpha b_{n})$となる$\alpha,\beta$を2組求めよ

(2)
$a_{n},b_{n}$の一般項

(3)
$\displaystyle \sum_{k=1}^n ak$

出典:2012年徳島大学 過去問
投稿日:2019.03.24

<関連動画>

【数B・Ⅲ】漸化式と極限:連立漸化式:数列{x[n]},{y[n]}をx[1]=y[1]=1, x[n+1]=(2/3)x[n]+(1/6)y[n], y[n+1]=(1/3)x[n]+(5/6)y…

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$x_n$},{$y_n$}を$x_1=y_1=1, x_{n+1}=\dfrac{2}{3}x_n+\dfrac{1}{6}y_n, y_{n+1}=\dfrac{1}{3}x_n+\dfrac{5}{6}y_n$で定めるとき、
(1)$x_{n+1}+αy_{n+1}=\beta(x_n+αy_n)$を満たす$\alpha,\beta$の組を2組求めよう。
(2)数列{$x_n$},{$y_n$}の一般項を求めよう。
(3)数列{$x_n$},{$y_n$}の極限を求めよう。
この動画を見る 

09岡山県教員採用試験(数学:1-(5) 行列式)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(5)$

$A=\begin{pmatrix}
1 & x & 2 \\
1 & x^2 & 4 \\
1 & x^3 & 8
\end{pmatrix}$

$\vert A \vert=0$となるとき$x$の値を求めよ.
この動画を見る 

福田の数学〜北里大学2024医学部第3問〜確率漸化式

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
箱Aには赤玉2個、白玉1個入っており、箱Bには白玉3個が入っている。2つの箱A、Bについて、次の操作を繰り返す。
(操作)2つの箱A,Bからそれぞれ1個ずつ玉を同時に取り出し、箱Aから取り出した玉を箱Bに入れて、箱Bから取り出した玉を箱Aに入れる。
n回目の操作を終えたときに箱Aに入っている赤玉の個数が2個、1個、0個である確率をそれぞれ$p_n,q_n,r_n$とする。
(1)$p_1,q_1,p_2,q_2$を求め、$r_n$を$p_n$と$q_n$を用いて表せ。
(2)$p_{n+1}$を$p_n,q_n$で表せ。また$q_{n+1}$を$q_n$を用いて表せ。
(3)$q_n$を求めよ。
(4)$s_n=3^np_n$とおいて、$s_n$を求めよ。また、$p_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【13−6 連立漸化式】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件によって定められる数列$\{x_n\},\{y_n\}$を考える。
$x_1=1,y_1=5$ $x_{n+1}=x_n+y_n$ $y_{n+1}=5x_n+y_n(n=1,2,・・・)$

次の問いに答えよ。
(1)
$a_n=x_n+cy_n$とおいたとき、数列$\{a_n\}$が等比数列となるように定数$c$の値を定め、$a_n$を$n$の式で表せ。

(2)
$x_n$および$y_n$を$n$の式で表せ。
この動画を見る 

【高校数学】 数B-90 漸化式④

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=1,a_{n+1}=3a_n+4n$
この動画を見る 
PAGE TOP