【数Ⅱ】【微分法と積分法】領域の面積 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】領域の面積 ※問題文は概要欄

問題文全文(内容文):
次の式を同時に満たす点$(x,y)$の存在する部分の面積を求めよ。
$y\geqq x^2+1,y\geqq x+3,y\leqq x+7$
チャプター:

0:00 オープニング
0:05 問題文、解説
2:10 エンディング

単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を同時に満たす点$(x,y)$の存在する部分の面積を求めよ。
$y\geqq x^2+1,y\geqq x+3,y\leqq x+7$
投稿日:2025.03.14

<関連動画>

福田の数学〜東北大学2023年文系第4問〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 関数f(x)に対して、座標平面上の2つの点P(x, f(x)), Q(x+1, f(x)+1)を考える。実数xが0≦x≦2の範囲を動くとき、線分PQがつうかしてできる図形の面積をSとおく。以下の問いに答えよ。
(1)関数f(x)=-2|x-1|+2に 対して、Sの値を求めよ。
(2)関数f(x)=$\frac{1}{2}(x-1)^2$ に対して、曲線y=f(x)の接線で、傾きが1のものの方程式を求めよ。
(3)設問(2)の関数f(x)=$\frac{1}{2}(x-1)^2$ に対して、Sの値を求めよ。

2023東北大学文系過去問
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第2問〜微分積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
[1] $a$を実数とし、$f(x)=(x-a)(x-2)$とおく。また、$F(x)=\int_0^xf(t)dt$とする。

(1)$a=1$のとき、$F(x)はx=\boxed{\ \ ア\ \ }$で極小になる。

(2)$a=\boxed{\ \ イ\ \ }$のとき、$F(x)$は常に増加する。また、$F(0)=\boxed{\ \ ウ\ \ }$
であるから、$a=\boxed{\ \ イ\ \ }$のとき、$F(2)$の値は$\boxed{\boxed{\ \ エ\ \ }}$である。

$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪0 ①正 ②負

(3)$a \gt \boxed{\ \ イ\ \ }$とする。
bを実数とし、$G(x)=\int_b^xf(t)dt$とおく。

関数$y=G(x)$のグラフは、$y=F(x)$のグラフを$\boxed{\boxed{\ \ オ\ \ }}$方向に
$\boxed{\boxed{\ \ カ\ \ }}$だけ平行移動したものと一致する。また、$G(x)はx=\boxed{\ \ キ\ \ }$
で極大になり、$x=\boxed{\ \ ク\ \ }$で極小になる。
$G(b)=\boxed{\ \ ケ\ \ }$であるから、$b=\boxed{\ \ キ\ \ }$のとき、曲線$y=G(x)$と
$x$軸との共有点の個数は$\boxed{\ \ コ\ \ }$個である。


$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$x$軸 ①$y$軸

$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$b$ ①$-b$ ②$F(b)$
③$-F(b)$ ④$F(-b)$ ⑤$-F(-b)$


[2] $g(x)=|x|(x+1)$とおく。

点$P(-1,0)$を通り、傾きが$c$の直線を$l$とする。$g'(-1)=\boxed{\ \ サ\ \ }$
であるから、$0 \lt c \lt \boxed{\ \ サ\ \ }$のとき、曲線$y=g(x)$と直線$l$は3点
で交わる。そのうちの1点は$P$であり、残りの2点を点$P$に近い方から順に
$Q,R$とすると、点$Q$の$x$座標は$\boxed{\ \ シス\ \ }$であり、点$R$の$x$座標は
$\boxed{\ \ セ\ \ }$である。

また、$0 \lt c \lt \boxed{\ \ サ\ \ }$のとき、線分$PQ$と曲線$y=g(x)$で囲まれた図形の
面積を$S$とし、線分$QR$と曲線$y=g(x)$で囲まれた図形の面積を$T$とすると
$\scriptsize{S=\displaystyle \frac{\boxed{\ \ ソ\ \ }c^3+\boxed{\ \ タ\ \ }c^2-\boxed{\ \ チ\ \ }c+1}{\boxed{\ \ ツ\ \ }}}$

$T=c^{\boxed{テ}}$
である。

2021共通テスト過去問
この動画を見る 

公式を使う?使わない?富山大 積分基本問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
a>0
$f(x)=x^3-6x$,$g(x)=-3x+a$
f(x)とg(x)は2つの共有点をもつ
①aの値
②f(x)とg(x)とで囲まれる面積
この動画を見る 

数学基礎40「積分と面積公式」【高校数学ⅡB】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
積分と面積公式の解説動画です
この動画を見る 

福田の数学〜慶應義塾大学2024環境情報学部第4問〜球の一部の体積と距離の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)$xyz$空間において、不等式 $x^2+y^2+z^2\leqq |x|$ が定める立体の体積は$\frac{\fbox{アイ}}{\fbox{ウエ}}\pi$である。また、原点を中心とする球面がこの立体と共有点をもつとき、球面の半径の最大値は$\fbox{オカ}$である。
(2)$xyz$空間において、不等式 $x^2+y^2+z^2\leqq|x|+|y|$ が定める立体の体積は$\frac{\fbox{キク}}{\fbox{ケコ}}\pi$である。また、原点を中心とする球面がこの立体と共有点をもつとき、球面の半径の最大値は$\sqrt{\fbox{サシ}}$ である。
(3)$xyz$ 空間において、不等式 $x^2+y^2+z^2\leqq$$ |x| + |y| + |z| - \frac{1}{4}$ が定める立体の体積は$(\fbox{スセ}$$+\frac{\fbox{ソタ}}{\fbox{チツ}}\sqrt{\fbox{テト}})\pi$ である。また、原点を中心とする球面がこの立体と共有点をもつとき、球面の半径の最大値は $\frac{\fbox{ナニ}}{\fbox{ヌネ}}\sqrt{\fbox{ノハ}}$ $+\frac{\fbox{ヒフ}}{\fbox{ヘホ}}\sqrt{\fbox{マミ}}$ である。(ただし、$\fbox{ノハ} \le \fbox{マミ}$ とする。)
この動画を見る 
PAGE TOP