大学入試問題#194 横浜国立大学 不定積分 - 質問解決D.B.(データベース)

大学入試問題#194 横浜国立大学 不定積分

問題文全文(内容文):
$\displaystyle \int \sqrt{ 1-e^{-2x} }\ dx$を計算せよ。

出典:横浜国立大学 入試問題
チャプター:

04:41~ 解答のみ掲載 約10秒間隔

単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \sqrt{ 1-e^{-2x} }\ dx$を計算せよ。

出典:横浜国立大学 入試問題
投稿日:2022.05.10

<関連動画>

#千葉大学2021#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int x log(x^2-1) dx$

出典:2021年千葉大学
この動画を見る 

【数Ⅲ】置換積分【理屈と手順を分けて考える。】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\displaystyle \int 2x(x^2+1)^3 dxを求めよ.$
$ (2)\displaystyle \int \dfrac{x}{x^2+1}dxを求めよ.$
$ (3)\displaystyle \int_{1}^{2}\dfrac{x}{x^2+1}dxを求めよ.$
$ (4)\displaystyle \int_{0}^{1} x\sqrt{2x+1}dxを求めよ.$
この動画を見る 

福田のおもしろ数学191〜指数関数と不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \int e^{\sqrt{x}} dx$を求めよ。
この動画を見る 

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int \frac{x^2+x+1}{x^2+1}~dx$
(2) $\displaystyle \int \frac{x^4}{x^2-1}~dx$


(1)次の等式が成り立つように、定数$a,b,c$の値を定めよ。
$\dfrac{3x+2}{x(x+1)^2}=\dfrac{a}{x}+\dfrac{b}{x+1}+\dfrac{c}{(x+1)^2}$

(2)不定積分$\displaystyle \int \dfrac{3x+2}{x(x+1)^2}~dx$を求めよ。


次の不定積分を求めよ。
(1) $\displaystyle \int \frac{dx}{x(x^2-1)}$
(2) $\displaystyle \int \frac{dx}{x^2(x+2)}$
(3) $\displaystyle \int \frac{dx}{x(x^2+1)}$
(4) $\displaystyle \int \frac{x^2+1}{x^4-5x^2+4}~dx$
(5) $\displaystyle \int \frac{3x+2}{x(x+1)^3}~dx$
(6) $\displaystyle \int \frac{x^4}{x^3-3x+2}~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \frac{dx}{\sqrt{x+1}-\sqrt x}$
(2) $\displaystyle \int \frac{x}{\sqrt{3x+4}-2}~dx$
この動画を見る 

大学入試問題#435「基本的な性質が盛り沢山の良問!!」 信州大学(2014) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{3\sin\theta-\sin3\theta}{1+\cos\theta}d\theta$

出典:2014年信州大学理学部後期 入試問題
この動画を見る 
PAGE TOP