【数Ⅱ】【三角関数】加法定理の応用7 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【三角関数】加法定理の応用7 ※問題文は概要欄

問題文全文(内容文):
△ABCにおいて、 tanBtanC=1 であるとき、この三角形は∠Aが直角である直角三角形であることを証明せよ。
チャプター:

0:00 オープニング
0:06 問題文
0:15 解説

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、 tanBtanC=1 であるとき、この三角形は∠Aが直角である直角三角形であることを証明せよ。
投稿日:2025.03.13

<関連動画>

福田の数学〜慶應義塾大学2022年看護医療学部第1問(3)〜三角関数の最大最小の種類

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1(3)関数f(θ)=cos2θ+2cosθ
0θπ の範囲で最小値をとるのはθ=    
のときであり、最大値を取るのはθ=    のときである。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田の数学〜2直線のなす角はtanの加法定理〜慶應義塾大学2023年商学部第2問〜2直線のなす角と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a>0,b<0とする。放物線C:y=32x2上の点A(a,32a2)と点B(b,32b2)について、点Aと点Bにおける放物線の接線をそれぞれlとmで表し、その好転をPとする。
(1)lとmが直交するとき、交点Pのy座標はである。
(2)a=2で、APB=π4とする。このとき、bの値はエオである。
(3)b=-aで、APB=π3とする。この時、aの値はである。また、PAを半径、APBを中心角として扇形PABが定まる。この扇形は放物線Cによって2つの図形に分割され、大きい図形の面積と小さい図形の面積の差はπである。

2023慶應義塾大学商学部過去問
この動画を見る 

【高校数学】 数Ⅱ-109 2直線のなす角

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
交わる2直線y=m,x+n,y=m2x+n2が垂直でないとき、そのなす鋭角をθとするとtanθ=①____

◎次の2直線のなす角θを求めよう。ただし、0<θ<π2とする。

y=3x+5.y=2x

y=3x,y=x5

3x2y=4,33x+y2=0
この動画を見る 

【高校数学】一緒に解こう三角関数の合成 4-15【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0≦x<2πのとき、次の方程式を解け。
  sin x-3cos x=1


(2)次の関数の最大値と最小値、およびそのときのxの値を求めよ。
  y=sin x+cos x(0≦x≦2π)
この動画を見る 

【高校数学】 数Ⅱ-101 三角関数を含む方程式・不等式③

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
0θ<2πのとき、次の方程式を解こう。

sin(θ+π6)=32

cos(θπ4)=32

sin(2θπ3)=32
この動画を見る 
PAGE TOP preload imagepreload image