【2次方程式の知識はこれで完ペキ!】複素数と2次方程式の関係を解説!〔数学、高校数学〕 - 質問解決D.B.(データベース)

【2次方程式の知識はこれで完ペキ!】複素数と2次方程式の関係を解説!〔数学、高校数学〕

問題文全文(内容文):
2次方程式と複素数について解説します。
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係
指導講師: 3rd School
問題文全文(内容文):
2次方程式と複素数について解説します。
投稿日:2021.11.18

<関連動画>

【数Ⅱ】【複素数と方程式】2次方程式の解と判別式7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$の2つの解をα、βとするとき、次の式の値を求めよ。
$\frac{1}{(α-2)(β-2)}+\frac{1}{(α-1)(β-1)}+\frac{1}{(α+1)(β+1)}$

解の公式を用いて、次の2次式を因数分解せよ。
(1)$x^2-xy-xz+2y-2$
(2)$2x^2-5xy+2y^2+x+y-1$

次の連立方程式を解け。
(1)$x+y=3$
$x+y+xy=-7$
(2)$x^2+y^2=13$
$xy=6$
この動画を見る 

【数Ⅱ】複素数と方程式:2次方程式の解の判別(最高次数の係数が文字の場合)kは定数とする。次の方程式の解の種類を判別せよ。(k²-1)x²+2(k-1)+2=0

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$(k²-1)x²+2(k-1)+2=0$の解の種類を判別せよ。
この動画を見る 

【そこに解が見えている…!】解と係数の関係:二次方程式(その3)~中学からの二次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x^2+x+2=0$の2つの解を$ \alpha,\beta $とし,
$ \alpha^n+\beta^n=S(n)$とおくとき,
$ S(1),S(2),S(3),S(4),S(5)$を求めよ.
この動画を見る 

3次方程式 解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2+2x+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^3,\beta^3,\delta^3$を解にもつ3次方程式を求めよ.
この動画を見る 

解の公式の利用 A 2021専大松戸

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a>0とする2次方程式
$x^2-ax+4a=0$の解が
$x=\frac{a ± \sqrt{57} }{2}$となるとき
a=?(a>0)

2021専修大学松戸高等学校
この動画を見る 
PAGE TOP