九州大 数式 - 質問解決D.B.(データベース)

九州大 数式

問題文全文(内容文):
$\displaystyle \frac{x+y}{2}=\displaystyle \frac{y+z}{3}=\displaystyle \frac{z+x}{7}$
すべての実数$x,y,z$でつねに$x^2+y^2+z^2+a(x+y+z) \gt -1$となるような$a$の範囲は?

出典:1962年九州大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x+y}{2}=\displaystyle \frac{y+z}{3}=\displaystyle \frac{z+x}{7}$
すべての実数$x,y,z$でつねに$x^2+y^2+z^2+a(x+y+z) \gt -1$となるような$a$の範囲は?

出典:1962年九州大学 過去問
投稿日:2019.07.20

<関連動画>

福田のおもしろ数学467〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b,c$を正の数とするとき、

不等式

$\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2} \geqq \sqrt{a^2+ac+c^2}$

を証明して下さい。
    
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
この動画を見る 

福田の1.5倍速演習〜合格する重要問題044〜北海道大学2017年度理系第1問〜不等式の証明と整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
自然数の2乗となる数を平方数という。
(1)自然数a,n,kに対して、
$n(n+1)+a=(n+k)^2$が成り立つとき、
$a \geqq k^2+2k-1$
が成り立つことを示せ。
(2)$n(n+1)+14$が平方数となるような自然数nを全て求めよ。

2017北海道大学理系過去問
この動画を見る 

北海道大 対数 不等式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?

(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?

出典:北海道大学 過去問
この動画を見る 

二項定理 弘前大

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+x)^n$を展開したときの次数が奇数の項の係数の和を求めよ.

弘前大過去問
この動画を見る 
PAGE TOP