福田の数学〜立教大学2022年理学部第1問(2)〜余事象と確率の加法定理 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年理学部第1問(2)〜余事象と確率の加法定理

問題文全文(内容文):
下図のように1から9までの数字が1つずつ記入された、9枚のカードがある。
$\boxed{1}\ \ \ \boxed{2}\ \ \ \boxed{3}\ \ \ \boxed{4}\ \ \ \boxed{5}\ \ \ \boxed{6}\ \ \ \boxed{7}\ \ \ \boxed{8}\ \ \ \boxed{9}$
これら9枚のカードから同時に取り出した3枚のカードの数字の積が
10で割り切れる確率は$\boxed{イ}$である。

2022立教大学理学部過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
下図のように1から9までの数字が1つずつ記入された、9枚のカードがある。
$\boxed{1}\ \ \ \boxed{2}\ \ \ \boxed{3}\ \ \ \boxed{4}\ \ \ \boxed{5}\ \ \ \boxed{6}\ \ \ \boxed{7}\ \ \ \boxed{8}\ \ \ \boxed{9}$
これら9枚のカードから同時に取り出した3枚のカードの数字の積が
10で割り切れる確率は$\boxed{イ}$である。

2022立教大学理学部過去問
投稿日:2022.09.11

<関連動画>

きょ、京大!?絶対に落としてはいけない2023年度の確率の問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を自然数とする。一個のさいころを$n$回投げ、出た目を順に$X_{1},X_{2}……,X_{n}$とし、$n$個の数の積$X_{1},X_{2}……,X_{n}$を$Y$とする。

(1)$Y$が5で割り切れる確率を求めよ。

京都大過去問
この動画を見る 

福田のわかった数学〜高校1年生068〜場合の数(7)円順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(7) 円順列
8人を図のように(1)円形のテーブル (2)正方形のテーブル (3)長方形のテーブルに並べる方法は
それぞれ何通りあるか。
(※図は動画参照)
この動画を見る 

【数A】【場合の数と確率】反復試行の確率、対戦ゲームの確率 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
硬貨を何回か投げ、先に表が2回出るとAの勝ちとし、先に裏が4回出るとBの勝ちとするゲームを考える。次の確率を求めよ。
(1)5回目にBが勝つ確率。
(2)A,Bそれぞれの勝つ確率。
この動画を見る 

福田の数学〜約数の個数を返す関数の性質〜北里大学2023年医学部第1問(4)〜約数の個数と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
( 4 )正の整数 N に対して、の正の約数の個数を(い)とする。例えば、12の正の約数は 1 , 2 , 3 , 4 , 6 , 12 の 6 個であるから、$f(12)= 6$である。
(i)$f(5040)=\fbox{シ}$である。
(ii)$f(k)=15$を満たす正の整数$k$のうち、 2 番目に小さいものは$\fbox{ス}$である。
(iii)大小2つのサイコロを投げるとき、出る目の積を$l$とおく。$f(l)=4$となる確率は$\fbox{セ}$である。
(iv)正の整数mとnは互いに素で、等式$f(mn)=3f(m)+5f(n)-13$を満たすとする。このとき、$mn$を最小にする$m$と$n$の組$(m,n)$は$\fbox{ソ}$である。

2023杏林大学医過去問
この動画を見る 

【数学】確率:センター試験(平成30年)本試

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に -1点を加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

 ・持ち点が再び0点になった場合は、その時点で終了する。

 ・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で終了する。

(1) コインを2回投げ終わって持ち点が -2点である確率は □
である。また、コインを2回投げ終わって持ち点が1点である確率は □
である。
(2) 持ち点が再び0点になることが起こるのは、コインを
□ 回投げ終わったときである。コインを □回投げ終わって持ち点が0点になる確率は
□である。
(3) ゲームが終了した時点で持ち点が4点である確率は □である。
(4) ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ終わって持ち点が1点である条件付き確率は□である。
この動画を見る 
PAGE TOP