福田の数学〜名古屋大学2025理系第3問〜球の通過範囲の体積 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2025理系第3問〜球の通過範囲の体積

問題文全文(内容文):

$\boxed{3}$

以下の問いに答えよ。

(1)実数$r,\alpha$は$0\lt r \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xy$平面内で、点$(1,0)$を中心にもつ半径$r$の

円周およびその内部を$C$とする。

$C$を原点$(0,0)$を中心に反時計回りに角度$\alpha$だけ

回転させるとき、$C$が通過する領域の面積を求めよ。

(2)実数$R,\alpha$は$0\lt R \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xyz$空間内で、点$(1,0,0)$を中心にもつ半径$R$の

球面およびその内部を$B$とする。

$B$を$z$軸のまわりに角度$\alpha$だけ回転させるとき、

$B$が通過する領域の体積を求めよ。

ただし、回転の向きは回転後の$B$の中心が

$(\cos \alpha,\sin \alpha,0)$になるように選ぶものとする。

$2025$年名古屋大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

以下の問いに答えよ。

(1)実数$r,\alpha$は$0\lt r \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xy$平面内で、点$(1,0)$を中心にもつ半径$r$の

円周およびその内部を$C$とする。

$C$を原点$(0,0)$を中心に反時計回りに角度$\alpha$だけ

回転させるとき、$C$が通過する領域の面積を求めよ。

(2)実数$R,\alpha$は$0\lt R \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xyz$空間内で、点$(1,0,0)$を中心にもつ半径$R$の

球面およびその内部を$B$とする。

$B$を$z$軸のまわりに角度$\alpha$だけ回転させるとき、

$B$が通過する領域の体積を求めよ。

ただし、回転の向きは回転後の$B$の中心が

$(\cos \alpha,\sin \alpha,0)$になるように選ぶものとする。

$2025$年名古屋大学理系過去問題
投稿日:2025.05.16

<関連動画>

福田の数学〜早稲田大学2024年人間科学部第5問〜円の性質と切り取られる弦の長さ

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 2点A(-$\sqrt 2$-$\sqrt 6$, $\sqrt 2$-$\sqrt 6$), B($\sqrt 2$+$\sqrt 6$, $\sqrt 2$-$\sqrt 6$)と原点O(0, 0)について、$\theta$=$\angle\textrm{AOB}$ とするとき、$\theta$=$\displaystyle\frac{\boxed{ナ}}{\boxed{ニ}}\pi$ である。ただし、0≦$\theta$≦$\pi$ とする。さらに円$x^2$+$y^2$-$2x$-$10y$+22=0 を$C$とする。円$C$上の点P, Qは
$\angle\textrm{APB}$=$\angle\textrm{AQB}$=$\displaystyle\frac{5}{12}\pi$
を満たす点とする。このとき、PQ=$\displaystyle\boxed{ヌ}\sqrt{\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}}$ である。
この動画を見る 

愛があれば解決する。愛はなくても問題ない

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+2\sqrt{3}y=\dfrac{x}{x^2+y^2} \\
2\sqrt{3}x-2y=\dfrac{y}{x^2+y^2}
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け.
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(1)。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面上で、次の二つの2次関数のグラフについて考える。

$y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②$

①、②の2次関数のグラフには次の共通点がある。

共通点:・y軸との交点のy座標は$\boxed{ア}$である。
・y軸との交点における接線の方程式は$y=\boxed{イ}\ x+\boxed{ウ}$である。

次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が
$y=\boxed{イ\}\ x+\boxed{ウ}$となるものは
$\boxed{エ}$である。

$\boxed{エ}$の解答群
⓪$y=3x^2-2x-3$ ①$y=-3x^2+2x-3$ ②$y=2x^2+2x-3$
③$y=2x^2-2x+3$ ④$y=-x^2+2x+3$ ⑤$y=-x^2-2x+3$

a,b,cを0でない実数とする。
曲線$y=ax^2+bx+c$上の点$(0,\boxed{オ})$における接線をlとすると、
その方程式は$y=\boxed{カ}\ x+\boxed{キ}$である。

直線lとx軸との交点のx座標は$\frac{\boxed{クケ}}{\boxed{コ}}$である。

a,b,cが正の実数であるとき、曲線$y=ax^2+bx+c$と
直線lおよび直線$x=\frac{\boxed{クケ}}{\boxed{コ}}$で囲まれた図形の
面積を$S$とすると$S=\frac{ac^{\boxed{サ}}}{\boxed{シ}b^{\boxed{ス}}} \ldots③$ である。

③において、$a=1$とし、Sの値が一定となるように正の実数b,cの値を変化させる。
このとき、bとcの関係を表すグラフの概形は$\boxed{セ}$である。
(※$\boxed{セ}$の選択肢は動画参照)

2022共通テスト数学過去問
この動画を見る 

基本問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4-2x^3+3x^2-2x+1=0$のとき,
$\dfrac{x^{2222}}{x^{2224}+1}$の値を求めよ.
この動画を見る 

気持ちいい別解あり!これ解ける?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b,c$を正の数とするとき、不等式
$2\left( -\frac{a+b}{2}-\sqrt{ab}\right)≦3\left(\frac{a+b+c}{2}-\sqrt[3]{abc}\right)$
を証明せよ。

また、等号が成立するのはどんな場合か。

京都大過去問
この動画を見る 
PAGE TOP