大学入試問題#598「計算が大変でした」 関西大学(2009) #区分求積法 - 質問解決D.B.(データベース)

大学入試問題#598「計算が大変でした」 関西大学(2009) #区分求積法

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n-k}{n\sqrt{ 3n^2+k^2 }}$

出典:2009年関西大学 入試問題
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n-k}{n\sqrt{ 3n^2+k^2 }}$

出典:2009年関西大学 入試問題
投稿日:2023.07.26

<関連動画>

福田のおもしろ数学202〜収束するための必要十分条件

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
整式$f(x)$がある。
$\displaystyle \lim_{x \rightarrow a}\dfrac{f(x)}{x-a}=b$であるための必要十分条件を求めよ。
この動画を見る 

福田の数学〜早稲田大学理工学部2025第5問〜無理関数のグラフ上に無数の有理点が存在する証明

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$xy$平面上の曲線$C:y=\sqrt[3]{x^2+2}$と考え、

$C$上の$(0,\sqrt[3]{2})$以外の点$P(a,b)$における接線を

$\ell : y = kx +c$と表す。$C$と$\ell$の方程式から

$x$を消去して得られる$y$についての$3$次方程式

$f(y)=0$は$b$を重解としてもつので、もう$1$つの解を

$b'$とする。

ただし、$b'$が$3$重解のときは$b'=b$とみなす。

次の問いに答えよ。

(1)$2b+b'$を$k$のみの分数式で表せ。

(2)$b'$を$b$のみの分数式で表せ。

(3)$C$と$\ell$の共有点で、その$y$座標が$b'$であるものを

$P'(a',b')$とする。

$a$と$b$が有理数ならば、$a'$と$b'$も有理数であることを

示せ。

(4)$b$が奇数$p,q$と負でない整数$r$を用いて

$b=\dfrac{p}{2^r q}$で与えられるとする。

有理数$b'$を奇数$p',q'$と整数$s$を用いて$b'=\dfrac{p'}{2^s q'}$と

表すとき、$s$を$r$の式で表せ。

(5)$P(5,3)$が曲線$C$上の点であることを利用して、

$C$上に$x$座標と$y$座標がともに有理数であるような点が

無数に存在することを示せ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

数検準1級2次過去問【2020年12月】3番:合成関数

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣ $0 \leqq x \leqq 4$

$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2 (0 \leqq x < 2) \\
-2x+8(2 \leqq x \leqq 4)
\end{array}
\right.
\end{eqnarray}$

(1)$f(f(x)) (0 \leqq x \leqq 4)$を求めよ。
(2)$f(f(x))=x$をみたすxをすべて求めよ。
この動画を見る 

大学入試問題#603「もう飽きた?」 千葉大学(1989) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$P_n=\sqrt[ n ]{ \displaystyle \frac{(3n)!}{(2n)!} }$とおく
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{P_n}{n}$を求めよ

(2)$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{n+2}{n})^{P_n}$を求めよ

出典:1989年千葉大学 入試問題
この動画を見る 

約束記号 四天王寺

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学を数楽に
問題文全文(内容文):
$\langle\langle x \rangle\rangle=2x-1$とする
$\langle\langle \quad \langle\langle 2x \rangle\rangle -1 \rangle\rangle=x^2+10$
$x=?$

四天王寺高等学校
この動画を見る 
PAGE TOP