整数+3乗根の展開 山梨大 - 質問解決D.B.(データベース)

整数+3乗根の展開 山梨大

問題文全文(内容文):
2017年 山梨大学 過去問

$n$ 自然数
${(1+\sqrt[3]{2})}^x$は整数$a_n$,$b_n$,$c_n$を用いて
$a_n+b_n\sqrt[3]{2}+\frac{c_n}{\sqrt[3]{2}}$で表せることを証明
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2017年 山梨大学 過去問

$n$ 自然数
${(1+\sqrt[3]{2})}^x$は整数$a_n$,$b_n$,$c_n$を用いて
$a_n+b_n\sqrt[3]{2}+\frac{c_n}{\sqrt[3]{2}}$で表せることを証明
投稿日:2023.08.21

<関連動画>

【高校数学】 数B-62 等差数列とその和⑤

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①自然数の数列の和$1+2+3+・・・+n$を求めよう.

②初項48,末項-20,和490である等差数列の公差と項数を求めよう.
この動画を見る 

田の数学〜早稲田大学2021年人間科学部第3問〜格子点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
自然数$n$について、連立不等式
$\left\{\begin{array}{1}
x \geqq 0\\
\displaystyle\frac{1}{4}x+\frac{1}{5}|y| \leqq n\\
\end{array}\right.$
を満たす整数の組$(x, y)$の個数は、$n=1$のときは$\boxed{\ \ シ\ \ }$であり、$n$の式で表すと$\boxed{\ \ ス\ \ }n^2+\boxed{\ \ セ\ \ }n+\boxed{\ \ ソ\ \ }$となる。

2021早稲田大学人間科学部過去問
この動画を見る 

大学入試問題#463「ええ問題や~~」 信州大学 理・医 (2016) #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (1-x^2)^n dx$
$=\displaystyle \frac{4^n(n!)^2}{(2n+1)!}$を示せ

出典:2016年信州大学医学部 入試問題
この動画を見る 

【数学B/数列】等比数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の等比数列の一般項を求めよ。
(1)
$2,6,18,54…$

(2)
$1,-\displaystyle \frac{1}{2},\displaystyle \frac{1}{4}…$

(3)
第$5$項が$48$、第$8$項が$-384$
この動画を見る 

数学「大学入試良問集」【13−8 数学的帰納法(不等式の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$が自然数のとき、次の各問いに答えよ。
(1)不等式$n! \geqq 2^{n-1}$が成り立つことを証明せよ。
(2)不等式$1+\displaystyle \frac{1}{1!}+\displaystyle \frac{1}{2!}+・・・+\displaystyle \frac{1}{n!} \lt 3$が成り立つことを証明せよ。
この動画を見る 
PAGE TOP