微分の超頻出の問題!どこで最大値を取るかしっかり考えよう【大阪大学】【数学 入試問題】 - 質問解決D.B.(データベース)

微分の超頻出の問題!どこで最大値を取るかしっかり考えよう【大阪大学】【数学 入試問題】

問題文全文(内容文):
正の実数a,xに対して,

y=$(\log_{\frac{1}{2}}x)^{3}$+$a(\log_{\sqrt{ 2 } } x)(\log_{4} x^{3})$とする。

(1)t=$\log_{ 2 } x$とするとき,yをa,tを用いて表せ。

(2)xが$\dfrac{1}{2}$≦x≦8の範囲を動くとき,yの最大値Mをaを用いて表せ。

大阪大過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の実数a,xに対して,

y=$(\log_{\frac{1}{2}}x)^{3}$+$a(\log_{\sqrt{ 2 } } x)(\log_{4} x^{3})$とする。

(1)t=$\log_{ 2 } x$とするとき,yをa,tを用いて表せ。

(2)xが$\dfrac{1}{2}$≦x≦8の範囲を動くとき,yの最大値Mをaを用いて表せ。

大阪大過去問
投稿日:2023.04.21

<関連動画>

【高校数学】 数Ⅱ-139 指数関数・対数関数の最大値・最小値①

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$y=2^{2x}-4・2^{x}+1$の最小値を求めよう。

②関数$y=\log_3(2x-x^2)$の最大値を求めよう。
この動画を見る 

練習問題15 教採模試(対数の性質)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m,n\in IN$
$\log m+\log \left(1+\dfrac{1}{m}\right)+\log \left(1+\dfrac{1}{m+1}\right)$
$+・・・+\log\left(1+\dfrac{1}{m+n-1}\right)$
$=\log \ m+\log\ n$

$m,n$の値を求めよ.
この動画を見る 

【高校数学】 数Ⅱ-140 指数関数・対数関数の最大値・最小値②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$y=4^{x}-2^{x+1}+1$の最小値を求めよう。

②$1 \leqq x \leqq 27$において、関数$y=(\log_3x)^2-\log_3x^4-3$の最大値と最小値を求めよう。
この動画を見る 

【数Ⅱ】対数のグラフと不等式【底に注意してグラフを描こう。指数関数と全く同じ!?】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
対数のグラフと不等式に関して解説していきます.
この動画を見る 

【高校数学】 数Ⅱ-133 対数とその性質③

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎底の変換公式を用いて、次の値を求めよう。

①$\log_432$

②$\log_35・\log_581$

③$(\log_32+\log_94)(\log_29+\log_43)$
この動画を見る 
PAGE TOP