【高校数学】 数Ⅱ-176 定積分と面積⑤ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-176 定積分と面積⑤

問題文全文(内容文):
◎放物線$y=x^2$上に2点A(-1,1)、B(2,4)がある。

①点Aにおける放物線の接線の方程式を求めよう。

②点Bにおける放物線の接線の方程式を求めよう。

③①、②で求めた2つの接線と、放物線で囲まれた部分の面積Sを求めよう。
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎放物線$y=x^2$上に2点A(-1,1)、B(2,4)がある。

①点Aにおける放物線の接線の方程式を求めよう。

②点Bにおける放物線の接線の方程式を求めよう。

③①、②で求めた2つの接線と、放物線で囲まれた部分の面積Sを求めよう。
投稿日:2015.11.07

<関連動画>

【短時間でポイントチェック!!】定積分 面積①〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$y=x^2-3x$と$x$軸および$x=1,x=4$で囲まれた面積は?
この動画を見る 

#名古屋工業大学2024#不定積分_18#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\sqrt{ 2 }$ $logx$ $dx$

出典:2024年 名古屋工業大学
この動画を見る 

#藤田医科大学2023#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^5x$ $dx$

出典:2023年藤田医科大学
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第6問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$関数$F(x)=\frac{1}{2}+\int_0^{x+1}(|t-1|-1)dt$に対し、
$y=F(x)$で定まる曲線をCとする。
(1)$F(x)$を求めよ。
(2)$C$と$x$軸の共有点のうち、x座標が最小の点をP、最大の点をQ
とする。PにおけるCの接線をlとするとき、Cとlで囲まれた図形の面積Sを求めよ。
また、Qを通る直線mがSを2等分するとき、lとmの交点Rの座標を求めよ。

2022慶應義塾大学経済学部過去問
この動画を見る 

#群馬大学推薦2023#定積分_12#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#群馬大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{\pi}{2n}\sin\displaystyle \frac{k \pi }{2n}$

出典:2023年群馬大学推薦
この動画を見る 
PAGE TOP