整数問題 - 質問解決D.B.(データベース)

整数問題

問題文全文(内容文):
$ 7^{n+1}$が19で割り切れるならnは平方数でないことを示せ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 7^{n+1}$が19で割り切れるならnは平方数でないことを示せ.
投稿日:2022.10.16

<関連動画>

約数の個数、総和、完全数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
約数の個数,総和,完全数に関して解説していきます.
この動画を見る 

ショート動画か!

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)$の1の位の数を求めよ。

この動画を見る 

2023高校入試解説29問目 整数問題その1 早稲田本庄

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$h(m,n) = \frac{1}{2}(m+n)(m+n-1)-m+1$と定める。(m,nは正の整数)
$h(3m,3m+4) = 1987$を満たすmをすべて求めよ。

2023早稲田大学 本庄高等学院
この動画を見る 

福田のおもしろ数学038〜中学生でも理解できる〜素数がむすうに存在する証明その1

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#その他#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
素数が無数に存在する証明 その1
この動画を見る 

息抜き整数問題(でもそんなに簡単じゃないよ)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
この動画を見る 
PAGE TOP