大学入試問題#538「数列のバリューセット」 室蘭工業大学(2018) #数列 - 質問解決D.B.(データベース)

大学入試問題#538「数列のバリューセット」 室蘭工業大学(2018) #数列

問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}$
$a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$のとき
一般項$a_n$を求めよ

出典:2018年室蘭工業大学 入試問題
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: ますただ
問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}$
$a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$のとき
一般項$a_n$を求めよ

出典:2018年室蘭工業大学 入試問題
投稿日:2023.05.17

<関連動画>

【高校数学】階差数列の一般項~どこよりも丁寧に~ 3-9【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(3)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。(すべて、$a_1=1$とする)

①$(n+1)a_{n+1}=na_n+2$

②$na_{n+1}=(n+1)a_n+2$

③$(n+2)a_{n+1}=na_n+2$

④$na_{n+1}=(n+2)a_n+2$
この動画を見る 

2重階乗 中央大附属 (誘導は動画内あり)動画の最後に。。。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nに対して $n! = n×(n-1)×(n-2)× \cdots ×3×2×1$
正の偶数mに対して$m!!= mx(m-2)×(m-4)× \cdots ×6×4×2$
(例)6!=6×5×4×3×2×1 , 6!! = 6×4×2
$(2k)!!$を$k!$を用いて表せ
(k:自然数)

2023中央大学付属高等学校 (改)
この動画を見る 

【高校数学】部分分数分解の分母に二乗があるパターン

アイキャッチ画像
単元: #恒等式・等式・不等式の証明#数列とその和(等差・等比・階差・Σ)#積分とその応用#不定積分#数学(高校生)
指導講師: 受験メモ山本
問題文全文(内容文):
部分分数分解の分母に二乗がある場合の解説動画です
この動画を見る 

群馬大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=15$
$a_{x}=2a_{n-1}+4^n-1$

(1)
$a_{n}$を$n$を用いて表せ

(2)
$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{2^n}{a_{n}}$

出典:1993年群馬大学 過去問
この動画を見る 
PAGE TOP