福田の数学〜慶應義塾大学2022年環境情報学部第6問〜新型ウィルス感染拡大による大学の授業形態の決定 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年環境情報学部第6問〜新型ウィルス感染拡大による大学の授業形態の決定

問題文全文(内容文):
6ある大学で来学期の授業の形式をどうするかを検討している。
授業形式の選択としては、通常の対面形式(授業形式uと呼ぶことにする)、
Web上で試料を閲覧できたり課題を行ったりできるオンデマンド形式(授業形式vと呼ぶことにする)
Web会議システムを使用するオンライン配信形式(授業形式wと呼ぶことにする)
の3つがあるとする。
また、来学期の新型ウイルスの感染状況については、
急激に拡大している状況(感染状況xと呼ぶことにする)、
ピークは過ぎたが十分な収束にはいたっていない状況(感染状況yとよぶことにする)、
ある程度収束した状況(感染状況zとよぶことにする)の3つが考えられるとする。
いま、この大学は授業形式と新型ウイルスの感染状況の組み合わせについて、
次の表(※動画参照)に示す評論値(値が高いほど評価も高い)を定めているものとする。
来学期の感染状況について、感染状況xである確率をpx
感染状況yである確率をp_y、感染状況zである確率をpzとすると、
xyz空間において点p=(px,py,pz)(1,0,0),(0,1,0),(0,0,1)を頂点とする正三角形上の
点としてあらわすことができる。この正三角形上において、点pから各辺に垂線を下ろしたとき、
(1,0,0)と向かいの辺に下ろした垂線の長さをl_x、(0,1,0)と向かいの辺に下した垂線の長さをly
(0,0,1)と向かいの辺に下した垂線の長さをlzとする。
(1)このときpx=         lx,   
py=         ly,    pz=         lzが成り立つ。
いま、正三角形上の点p=(px,py,pz)に対して、上記の評価の期待値を最大にする
授業形式のラベルをつけることにする。ただし、pによっては評価値を最大にする選択が
複数ある場合もあり、その場合にはpに複数のラベルをつけることにする。
さらに、原点と(0,1,0),(0,0,1)を原点とするyz平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にxという感染状況のラベルをつけ、
原点と(1,0,0),(0,0,1)を原点とするxz平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にyという感染状況のラベルをつけ、
原点と(1,0,0),(0,1,0)を原点とするxy平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にzという感染状況のラベルをつけることにする。
すると、正三角形と3つの直角二等辺三角形からなる四面体の面上(頂点、辺も含む)
のそれぞれの点には、1つもしくは複数のラベルがつくことになる。例えば、
原点には{x,y,z}の3つのラベルがつく。
(2)このとき、正三角形の面上(頂点、辺も含む)の各点pにつけられるラベルの
可能性を列挙すると、以下の通りとなる。ただし、複数のラベルがつけられる場合には、
それぞれの中括弧内では、アルファベット順に書くものとする。空欄に入る
ラベルについて下記の選択肢から選びなさい。
単一のラベルがつく場合:{    },{w}
2つのラベルがつく場合:{    ,w},{u,    },
{    ,y},{w,y},{    ,z}
3つのラベルがつく場合:{    ,w,    },{    ,    ,    }
4つのラベルがつく場合:{u,    ,    ,    },{    ,    ,    ,    }

選択肢:(1)   u   (2)   v   (3)   w   (4)   x   (5)   y   (6)   z

2022慶應義塾大学環境情報学部過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
6ある大学で来学期の授業の形式をどうするかを検討している。
授業形式の選択としては、通常の対面形式(授業形式uと呼ぶことにする)、
Web上で試料を閲覧できたり課題を行ったりできるオンデマンド形式(授業形式vと呼ぶことにする)
Web会議システムを使用するオンライン配信形式(授業形式wと呼ぶことにする)
の3つがあるとする。
また、来学期の新型ウイルスの感染状況については、
急激に拡大している状況(感染状況xと呼ぶことにする)、
ピークは過ぎたが十分な収束にはいたっていない状況(感染状況yとよぶことにする)、
ある程度収束した状況(感染状況zとよぶことにする)の3つが考えられるとする。
いま、この大学は授業形式と新型ウイルスの感染状況の組み合わせについて、
次の表(※動画参照)に示す評論値(値が高いほど評価も高い)を定めているものとする。
来学期の感染状況について、感染状況xである確率をpx
感染状況yである確率をp_y、感染状況zである確率をpzとすると、
xyz空間において点p=(px,py,pz)(1,0,0),(0,1,0),(0,0,1)を頂点とする正三角形上の
点としてあらわすことができる。この正三角形上において、点pから各辺に垂線を下ろしたとき、
(1,0,0)と向かいの辺に下ろした垂線の長さをl_x、(0,1,0)と向かいの辺に下した垂線の長さをly
(0,0,1)と向かいの辺に下した垂線の長さをlzとする。
(1)このときpx=         lx,   
py=         ly,    pz=         lzが成り立つ。
いま、正三角形上の点p=(px,py,pz)に対して、上記の評価の期待値を最大にする
授業形式のラベルをつけることにする。ただし、pによっては評価値を最大にする選択が
複数ある場合もあり、その場合にはpに複数のラベルをつけることにする。
さらに、原点と(0,1,0),(0,0,1)を原点とするyz平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にxという感染状況のラベルをつけ、
原点と(1,0,0),(0,0,1)を原点とするxz平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にyという感染状況のラベルをつけ、
原点と(1,0,0),(0,1,0)を原点とするxy平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にzという感染状況のラベルをつけることにする。
すると、正三角形と3つの直角二等辺三角形からなる四面体の面上(頂点、辺も含む)
のそれぞれの点には、1つもしくは複数のラベルがつくことになる。例えば、
原点には{x,y,z}の3つのラベルがつく。
(2)このとき、正三角形の面上(頂点、辺も含む)の各点pにつけられるラベルの
可能性を列挙すると、以下の通りとなる。ただし、複数のラベルがつけられる場合には、
それぞれの中括弧内では、アルファベット順に書くものとする。空欄に入る
ラベルについて下記の選択肢から選びなさい。
単一のラベルがつく場合:{    },{w}
2つのラベルがつく場合:{    ,w},{u,    },
{    ,y},{w,y},{    ,z}
3つのラベルがつく場合:{    ,w,    },{    ,    ,    }
4つのラベルがつく場合:{u,    ,    ,    },{    ,    ,    ,    }

選択肢:(1)   u   (2)   v   (3)   w   (4)   x   (5)   y   (6)   z

2022慶應義塾大学環境情報学部過去問
投稿日:2022.07.13

<関連動画>

【数A】【場合の数と確率】重複組合せ2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
候補者が3人で、投票者が8人いる無記名投票で、1人1票を投票するときの表の分かれ方の総数を求めよ。ただし、候補者は投票できないとする。
この動画を見る 

この問題解けるかな?

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
階乗の問題
4!=?
4!!=?
3=?
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第1問〜条件付き確率と大小比較

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある国の国民がある病気に罹患している確率をpとする。
その病気の検査において、罹患者が陽性と判定される確率をq,
非罹患者が陽性と判定される確率をrとする。ただし0<p<1, 0<r<qである。
さらに、検査で陽性と判定された人が罹患している確率をsとする。次の問いに答えよ。
(1)sp, q, rを用いて表せ。
(2)k回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性
と判断された人が罹患している確率をakとする。akp,q,r,kを用いて表せ。
(3)k回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、
最終的に陽性と判断された人が罹患している確率をbkとする。bkp,q,r,kを用いて表せ。
(4)s, a2, b2の大小関係を示せ。

2022早稲田大学社会科学部過去問
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(10)〜最短経路(後編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 図のような道路がある。(※動画参照)地点AからBまで
最短経路を進むとき道順は何通りあるか。

2 図のような道路がある。(※動画参照)地点AからBまで
最短経路を進むとき道順は何通りあるか。
この動画を見る 

【数学A】一橋大学文系2010 確率の問題(解説)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
nを3以上の自然数とする
サイコロをn回投げ、出た目の数をそれぞれ順にX1,X2,・・・,Xnとする
i=2,3,nに対してXi=Xi1となる事象をAiことする。
(1)A2,A3,,Anのうち少なくとも1つが起こる確率pnは?
(2)A2,A3,,An少なくとも2つが起こる確率gnは?
この動画を見る 
PAGE TOP preload imagepreload image