福田の数学〜名古屋大学2025理系第1問〜関数の増減と最大 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2025理系第1問〜関数の増減と最大

問題文全文(内容文):

$\boxed{1}$

(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および

第$2$次導関数$f''(x)$をもち、

すべての$x$に対し$f''(x)\gt 0$をみたすとする。

さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。

$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$

このとき、

$a\lt c \lt b$をみたす任意の実数$c$に対し、

関数$g(x)=cx-f(x)$の値を最大にする

$x=x_0$がただひとつ存在することを示せ。

(2)実数$x$を変数とする関数

$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$

はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。

また、この$f$に対し小問(1)の極限値$a,b$を求めよ。

(3)小問(2)の関数$f$および極限値$a,b$を考える。

$a \lt c \lt b$をみたす任意の実数$c$に対し

小問(1)の$x_0$および$g(x_0)$を$c$で表せ。

$2025$年名古屋大学理系過去問題
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および

第$2$次導関数$f''(x)$をもち、

すべての$x$に対し$f''(x)\gt 0$をみたすとする。

さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。

$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$

このとき、

$a\lt c \lt b$をみたす任意の実数$c$に対し、

関数$g(x)=cx-f(x)$の値を最大にする

$x=x_0$がただひとつ存在することを示せ。

(2)実数$x$を変数とする関数

$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$

はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。

また、この$f$に対し小問(1)の極限値$a,b$を求めよ。

(3)小問(2)の関数$f$および極限値$a,b$を考える。

$a \lt c \lt b$をみたす任意の実数$c$に対し

小問(1)の$x_0$および$g(x_0)$を$c$で表せ。

$2025$年名古屋大学理系過去問題
投稿日:2025.05.14

<関連動画>

福田の数学〜中央大学2024理工学部第1問〜3つの関数の大小関係と絶対不等式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$a$ を $1$ 以上の実数、$b$ を実数とし、関数 $f(x), \, g(x), \, h(x)$ を以下で定める。
$\displaystyle f(x)=-|2|x|-1|, \quad g(x)=ax+b, \quad h(x)=e^x$
$(1)$ すべての実数 $x$ に対して $f(x) \leq g(x)$ が成り立つ。$(a, \, b)$ の範囲は、条件 $a \geq 1$ の下では、$b \geq 1$ のとき $a \leq \fbox{ア}$ であり、$\frac{1}{2} \leq b \leq 1$ のとき $a \leq \fbox{イ}$ である。$b < \frac{1}{2}$ のとき条件を満たす $a$ は存在しない。
$(2)$ 実数$p$ に対し、$x=p$ における $y=h(x)$ の接線の方程式は $y=\fbox{ウ}$ である。したがって $a=e^p$ のとき、すべての実数 $x$ に対して $g(x) \leq h(x)$ が成り立つのは $b \leq \fbox{エ}$ のときであり、これは $a$ と $b$ の関係式として $b \leq \fbox{オ}$
$(3)$ すべての実数 $x$ に対し、$f(x) \leq g(x) \leq h(x)$ が成り立つような $(a, \, b)$ 全体のなす領域を $D$ とする。$D$ における $a$ の最大値は $\fbox{カ}$ である。また、$D$ の面積は $\fbox{キ}$ である。
この動画を見る 

福田の数学〜中央大学2022年経済学部第1問(3)〜三角不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)$0\leqq x\leqq \pi$のとき、次の不等式を解け。
$\sin^2x-\cos^2x+sinx \gt 0$


2022中央大学経済学部過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科第3問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科第3問(2)それぞれの項で分けて丁寧に積分せよ
関数
$f(x)=\dfrac{x}{x²+3}$
に対して、$y=f(x)$のグラフをCとする。点A($1,f(1)$)におけるCの接線を
$l:y=g(x)$
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
$\displaystyle \int_{\alpha}^1{f(x)-g(x)}^2 dx$
を計算せよ。
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。
この動画を見る 

福田の数学〜早稲田大学2024教育学部第3問〜法線上の点の座標と最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
放物線 $C : y = x ^ 2$ 上に点$P(t, t²)$をとる。$C$の点$P$における法線上に点$Q$を、$PQ=1$ であり、点$Q$の$y$座標が点$P$の$y$座標よりも大きくなるようにとる。 点$Q$の$x$座標を$f(t)$ とおく。次の問いに答えよ。
(1) $f(t)$ を求めよ。
(2) $t$が$0\leqq t$の範囲を動くときの$f(t)$の最小値を求めよ。
この動画を見る 
PAGE TOP