問題文全文(内容文):
$\boxed{1}$
(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および
第$2$次導関数$f''(x)$をもち、
すべての$x$に対し$f''(x)\gt 0$をみたすとする。
さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。
$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$
このとき、
$a\lt c \lt b$をみたす任意の実数$c$に対し、
関数$g(x)=cx-f(x)$の値を最大にする
$x=x_0$がただひとつ存在することを示せ。
(2)実数$x$を変数とする関数
$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$
はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。
また、この$f$に対し小問(1)の極限値$a,b$を求めよ。
(3)小問(2)の関数$f$および極限値$a,b$を考える。
$a \lt c \lt b$をみたす任意の実数$c$に対し
小問(1)の$x_0$および$g(x_0)$を$c$で表せ。
$2025$年名古屋大学理系過去問題
$\boxed{1}$
(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および
第$2$次導関数$f''(x)$をもち、
すべての$x$に対し$f''(x)\gt 0$をみたすとする。
さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。
$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$
このとき、
$a\lt c \lt b$をみたす任意の実数$c$に対し、
関数$g(x)=cx-f(x)$の値を最大にする
$x=x_0$がただひとつ存在することを示せ。
(2)実数$x$を変数とする関数
$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$
はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。
また、この$f$に対し小問(1)の極限値$a,b$を求めよ。
(3)小問(2)の関数$f$および極限値$a,b$を考える。
$a \lt c \lt b$をみたす任意の実数$c$に対し
小問(1)の$x_0$および$g(x_0)$を$c$で表せ。
$2025$年名古屋大学理系過去問題
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および
第$2$次導関数$f''(x)$をもち、
すべての$x$に対し$f''(x)\gt 0$をみたすとする。
さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。
$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$
このとき、
$a\lt c \lt b$をみたす任意の実数$c$に対し、
関数$g(x)=cx-f(x)$の値を最大にする
$x=x_0$がただひとつ存在することを示せ。
(2)実数$x$を変数とする関数
$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$
はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。
また、この$f$に対し小問(1)の極限値$a,b$を求めよ。
(3)小問(2)の関数$f$および極限値$a,b$を考える。
$a \lt c \lt b$をみたす任意の実数$c$に対し
小問(1)の$x_0$および$g(x_0)$を$c$で表せ。
$2025$年名古屋大学理系過去問題
$\boxed{1}$
(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および
第$2$次導関数$f''(x)$をもち、
すべての$x$に対し$f''(x)\gt 0$をみたすとする。
さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。
$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$
このとき、
$a\lt c \lt b$をみたす任意の実数$c$に対し、
関数$g(x)=cx-f(x)$の値を最大にする
$x=x_0$がただひとつ存在することを示せ。
(2)実数$x$を変数とする関数
$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$
はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。
また、この$f$に対し小問(1)の極限値$a,b$を求めよ。
(3)小問(2)の関数$f$および極限値$a,b$を考える。
$a \lt c \lt b$をみたす任意の実数$c$に対し
小問(1)の$x_0$および$g(x_0)$を$c$で表せ。
$2025$年名古屋大学理系過去問題
投稿日:2025.05.14





