福田の数学〜名古屋大学2025理系第1問〜関数の増減と最大 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2025理系第1問〜関数の増減と最大

問題文全文(内容文):

$\boxed{1}$

(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および

第$2$次導関数$f''(x)$をもち、

すべての$x$に対し$f''(x)\gt 0$をみたすとする。

さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。

$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$

このとき、

$a\lt c \lt b$をみたす任意の実数$c$に対し、

関数$g(x)=cx-f(x)$の値を最大にする

$x=x_0$がただひとつ存在することを示せ。

(2)実数$x$を変数とする関数

$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$

はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。

また、この$f$に対し小問(1)の極限値$a,b$を求めよ。

(3)小問(2)の関数$f$および極限値$a,b$を考える。

$a \lt c \lt b$をみたす任意の実数$c$に対し

小問(1)の$x_0$および$g(x_0)$を$c$で表せ。

$2025$年名古屋大学理系過去問題
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および

第$2$次導関数$f''(x)$をもち、

すべての$x$に対し$f''(x)\gt 0$をみたすとする。

さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。

$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$

このとき、

$a\lt c \lt b$をみたす任意の実数$c$に対し、

関数$g(x)=cx-f(x)$の値を最大にする

$x=x_0$がただひとつ存在することを示せ。

(2)実数$x$を変数とする関数

$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$

はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。

また、この$f$に対し小問(1)の極限値$a,b$を求めよ。

(3)小問(2)の関数$f$および極限値$a,b$を考える。

$a \lt c \lt b$をみたす任意の実数$c$に対し

小問(1)の$x_0$および$g(x_0)$を$c$で表せ。

$2025$年名古屋大学理系過去問題
投稿日:2025.05.14

<関連動画>

福田の1.5倍速演習〜合格する重要問題094〜青山学院大学2020年度理工学部第5問〜グラフと面積と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 関数$f(x)=\displaystyle\frac{1}{x^2+1}$について、以下の問いに答えよ。
(1)y=f(x)のグラフの概形を描け。凹凸も調べること。
(2)原点をOとし、y=f(x)のグラフの変曲点のうちx座標が正のものをPとする。
直線OPとy軸、y=f(x)のグラフとで囲まれた図形をDとする。Dの面積Sを求めよ。
(3)(2)の図形Dをy軸の周りに1回転してできる回転体の体積Vを求めよ。

2020青山学院大学理工学部過去問
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ3 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数$f(x)$について、$f'(0)=f''(0)=0$であることを示せ。
また、$f(x)$は$x=0$で極値をとるかどうかを調べよ。
(1) $f(x)=x^4$
(2) $f(x)=x^2\sin x$
この動画を見る 

福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。

2023名古屋大学理系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。

(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。

(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。

(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。

(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。

(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。   $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。

2021上智大学理系過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第2問〜連立不等式の表す領域の面積と回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$r$を正の実数とし、円$C_1:(x-2)^2+y^2=r^2$、楕円$C_2:\frac{x^2}{9}+y^2=1$を考える。
(1)円$C_1$と楕円$C_2$の共有点が存在するようなrの値の範囲は$\boxed{\ \ カ\ \ } \leqq r \leqq \boxed{\ \ キ\ \ }$である。
(2)$r=1$のとき、$C_1$と$C_2$の共有点の座標を全て求めると$\boxed{\ \ ク\ \ }$である。
これらの共有点のうちy座標が正となる点のy座標を$y_0$とする。連立不等式

$\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
0 \leqq y \leqq y_0\\
\end{array}\right.$
の表す領域の面積は$\boxed{\ \ ケ\ \ }$である。

(3)連立不等式
$\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
\displaystyle\frac{x^2}{9}+y^2 \geqq 1\\
y \geqq 0\\
\end{array}\right.$
の表す領域をDとする。Dをy軸のまわりに
1回転させてできる立体の体積は$\boxed{\ \ コ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP