【数Ⅰ】【2次関数】絶対値を含む関数のグラフ ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】絶対値を含む関数のグラフ ※問題文は概要欄

問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|

次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)

次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
チャプター:

0:00 オープニング
0:04 問題1の解説
2:53 問題2の解説
7:10 問題3の解説

単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|

次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)

次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
投稿日:2024.12.08

<関連動画>

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第4問〜整数の性質、循環小数と7進法

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
(1)$x$を循環小数$2.\dot3\dot6$とする。すなわち

$x=2.363636\cdots$

とする。このとき

$100×x-x=236.\dot3\dot6-2.\dot3\dot6$

であるから、$x$を分数で表すと

$x=\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$

である。

(2)有理数$y$は、7進法で表すと、二つの数字の並び$ab$が繰り返し現れる循環小数
$2.\dot a\dot b_{(7)}$になるとする。ただし、$a,$ $b$は$0$以上$6$以下の異なる整数である。
このとき
$49×y-y=2ab.\dot a\dot b_{(7)}-2.\dot a\dot b_{(7)}$
であるから

$y=\displaystyle \frac{\boxed{\ \ オカ\ \ }+7×a+b}{\boxed{\ \ キク\ \ }}$

と表せる。
$(\textrm{i})y$が、分子が奇数で分母が$4$である分数で表されるのは
$y=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{4}$ または $y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$
のときである。$y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$のときは、$7×a+b=\boxed{\ \ シス\ \ }$であるから
$a=\boxed{\ \ セ\ \ },$ $b=\boxed{\ \ ソ\ \ }$
である。

$(\textrm{ii})y-2$は、分子が$1$で分母が$2$以上の整数である分数で表されるとする。
このような$y$の個数は、全部で$\boxed{\ \ タ\ \ }$個である。

2020センター試験過去問
この動画を見る 

【普通に難問?でも悪問…!】文字式:お茶の水女子大学附属高等学校~全国入試問題解法

単元: #数学(中学生)#中1数学#方程式#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)#お茶の水女子大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$次の式をcについて解きなさい。$
$\dfrac{a(c-d)}{c+d}+\dfrac{b(c+d)}{c-d}=a+b$
この動画を見る 

【数Ⅰ】図形と計量:三角比の表①30°45°60°から!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・sin30°, sin45°, sin60°の値を求めよ。
・cos30°, cos45°, cos60°の値を求めよ。
・tan30°, tan45°, tan60°の値を求めよ。
この動画を見る 

ざ・息抜き

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け9 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$y=x^2-2x+m$の値が$0\leqq x\leqq 3$の範囲で常に負となるように、定数$m$の値の範囲を定めよ
この動画を見る 
PAGE TOP