【数Ⅰ】【2次関数】絶対値を含む関数のグラフ ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】絶対値を含む関数のグラフ ※問題文は概要欄

問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|

次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)

次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
チャプター:

0:00 オープニング
0:04 問題1の解説
2:53 問題2の解説
7:10 問題3の解説

単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|

次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)

次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
投稿日:2024.12.08

<関連動画>

【高校数学】2次方程式④~放物線と直線の共有点~ 2-10【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)放物線y=x²-4x+5と直線y=x+1の共有点の座標を求めよ。

(2)放物線y=x²-1と直線y=2x-kが接するとき、定数kの値を求めよ。
この動画を見る 

難しい因数分解やろうぜ【高校数学】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
難しい因数分解
(1)$a(l^2-c^2)+l(c^2-a^2)+c(a^2-l^2)$

(2)$a^2(b+c)+b^2(c+a)+c^2(a+b)+2abc$

(3)$2x^2+5xy+2y^2-x+y-1$

(4)$a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)$

(5)$x^2-y^2-zx+yz$

(6)$a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc$
この動画を見る 

福田の数学〜消去法の活用〜明治大学2023年全学部統一ⅠⅡAB第1問(3)〜データの分析中央値と平均

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(3)データAの大きさは15であり、データAの値は1,2,3,4,5のいずれかであるとする。
1,2,3,4,5のそれぞれを階級値であると考えたとき、その度数はどれも1以上であるとする。階級値1の度数が2、データAの中央値が2、データAの平均値がちょうど3であるとき、階級値5の度数は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第1問(4)〜空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)Oを原点とする$xyz$空間に点A(0,0,$\sqrt 6$)があり、$y$軸上の点B, C($t$,$\frac{t}{\tan\theta}$,0)を∠OBA=30°,∠BAC=45°,∠ACB=60° を満たすようにおく。ただし$t$は$t$>0 を満たす実数の定数、$\theta$は0°<$\theta$<90°を満たす実数の定数とする。
(i)$|\overrightarrow{BC}|$=$\boxed{\ \ ケ\ \ }$である。
(ii)$|\overrightarrow{OC}|^2$=$\boxed{\ \ コ\ \ }$である。
(iii)$\theta$は$\tan^2\theta$の値が$\boxed{\ \ サ\ \ }$となる実数である。
この動画を見る 

【数Ⅰ】図形と計量:三角比の表③

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・sin0°, sin90°, sin180°の値を求めよ。
・cos0°, cos90°, cos180°の値を求めよ。
・tan0°, tan90°, tan180°の値を求めよ。
この動画を見る 
PAGE TOP