大学入試問題#646「似てるけど」 京都工芸繊維大学(2011) 定積分 - 質問解決D.B.(データベース)

大学入試問題#646「似てるけど」 京都工芸繊維大学(2011) 定積分

問題文全文(内容文):
$0 \lt A \lt \displaystyle \frac{\pi}{2}$
(1)
$\displaystyle \int_{A}^{\frac{\pi}{2}} (\cos\ x)log(\sin\ x) dx$

(2)
$\displaystyle \int_{0}^{A} (\cos\ x)log(\cos\ x) dx$

出典:2011年京都工芸繊維大学後期 入試問題
チャプター:

00:00 問題紹介
08:00 作成した解答1
08:12 作成した解答2
08:22 作成した解答3

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt A \lt \displaystyle \frac{\pi}{2}$
(1)
$\displaystyle \int_{A}^{\frac{\pi}{2}} (\cos\ x)log(\sin\ x) dx$

(2)
$\displaystyle \int_{0}^{A} (\cos\ x)log(\cos\ x) dx$

出典:2011年京都工芸繊維大学後期 入試問題
投稿日:2023.11.12

<関連動画>

いろんな要素いっぱいの良問 日本医科大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\left(\frac{3}{2}x+\frac{3}{2}x+1 \right)^{n+2}$
を展開したときの$x^3$の係数を$Am$とする。
①$\displaystyle \lim_{ n \to x } \dfrac{1}{n^4}\displaystyle \sum_{k=1}^n A_k$
②$\displaystyle \lim_{ n \to (x) } \displaystyle \sum_{k=1}^n \dfrac{1}{A_n}$

日本医科大過去問
この動画を見る 

福田の数学〜京都大学2025文系第1問(2)〜整数の割り算で割り切れる条件

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(2)$n^4+6n^2+23$が$n^2+n+3$で

割り切れるような正の整数$n$をすべて求めよ。

$2025$年京都大学文系過去問題
この動画を見る 

大学入試問題#470「誘導なくてもどうにかできそう」 信州大学 理・医学部(2021) #微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\forall\ a,b$
$f(a+b)=f(a)+f(b)+4ab$
$f'(0)=2$
(1)
$f(0)$を求めよ

(2)
$f(x)$は微分可能を示せ
$f(x)$を求めよ

(3)
$\displaystyle \lim_{ x \to \infty } \displaystyle \int_{1}^{x} \displaystyle \frac{1}{f(t)}dt(x \gt 1)$

出典:2021年信州大学 入試問題
この動画を見る 

大学入試問題#790「解き方はたくさんありそう」 #福島大学(2021) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to a } \displaystyle \frac{\sin\ x-\sin\ a}{\sin(x-a)}$

出典:2021年福島大学 入試問題
この動画を見る 

#愛媛大学2014#極限#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(\sqrt{ x^2+x+4 }-\sqrt{ x^2+4 })\sin2x}{x^2}$

出典:2024年愛媛大学
この動画を見る 
PAGE TOP