正方形の面積2024 - 質問解決D.B.(データベース)

正方形の面積2024

問題文全文(内容文):
x×y=?
*図は動画内参照
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x×y=?
*図は動画内参照
投稿日:2024.01.01

<関連動画>

素数

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n411n2+49が素数となる整数 nを求めよ.

この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第3問〜漸化式の図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数列#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
(1)三角形ABCの内接円が辺ABと接する点をPとし、
BCと接する点をQとし、辺CAと接する点をRとする。
Aの大きさをθとすると、APR=であり、
PQR=である。

の解答群
0π2θθ2π2θπθ2
πθ2πθπ3θ2π23θ

(2)三角形T1の3つの角のうち、角の大きさが最小のものはπ6で、
最大のものはπ2であるとする。
n=1, 2, 3, ...について、三角形Tnの内接円をOnとし、
TnOnとが接する3つの点を頂点とするような三角形をTn+1とする。
このとき、三角形T2の3つの角のうち、
角の大きさが最小のものはπで、
最大のものは πである。
n=1, 2, 3, ...について、三角形Tnの3つの角のうち、
角の大きさが最小のものをanとし、最大のものをbnとする。三角形Tn+1について、
an+1=,   bn+1=
と表せる。この式より
an+bn=π,
bnan=πn1
であり、an=π(11n)である。

の解答群
an2bn2π2anπ2bnπan2
πbn2πan2πbn2πanπbn

2022明治大学全統過去問
この動画を見る 

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間ベクトルに対し、次の関係を定める。
a=(a1,a2,a3)b=(b1,b2,b3)が、
次の(i),(ii),(iii)のいずれかを
満たしているときabより前であるといい、
abと表す。
(i)a1<b1   (ii)a1=b1かつ
a2<b2   (iii)a1=b1かつa2=b2かつa3<b3

空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }mPP=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)(1)\overrightarrow{ p_{67} }(2)\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。

2022早稲田大学商学部過去問
この動画を見る 

大学入試問題#869「次数は分子の方が高いのね」 #玉川大学(2022) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
問題文全文(内容文):
12n2+13n+513n+1が整数となるような整数nをすべて求めよ。

出典:2022年玉川大学 入試問題
この動画を見る 

整数の性質 最小公倍数、最大公約数の基本① 【ゆう☆たろうがていねいに解説】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは正の整数とする。次のようなnをすべて求めよ。
(1)nと36の最小公倍数が504
(2)nと48の最小公倍数が720

3つの自然数40,56,nの最大公約数が8,最小公倍数が1400であるとき,nをすべて求めよ。

aは自然数とする。a+2は6の倍数であり,a+6は8の倍数であるとき,a+14は24の倍数であることを証明せよ
この動画を見る 
PAGE TOP preload imagepreload image